This book covers the impact of sustainable masonry on the environment, touting the many benefits of utilizing local and/or low embodied energy materials in the construction of sustainable buildings.
Brick and Block Masonry - From Historical to Sustainable Masonry contains the keynote and semi-keynote lectures and all accepted regular papers presented online during the 17th International Brick and Block Masonry Conference IB2MaC (Kraków, Poland, July 5-8, 2020). Masonry is one of the oldest structures, with more than 6,000 years of history. However, it is still one of the most popular and traditional building materials, showing new and more attractive features and uses. Modern masonry, based on new and modified traditional materials and solutions, offers a higher quality of life, energy savings and more sustainable development. Hence, masonry became a more environmentally friendly building structure. Brick and Block Masonry - From Historical to Sustainable Masonry focuses on historical, current and new ideas related to masonry development, and will provide a very good platform for sharing knowledge and experiences, and for learning about new materials and technologies related to masonry structures. The book will be a valuable compendium of knowledge for researchers, representatives of industry and building management, for curators and conservators of monuments, and for students.
This book gathers a selection of peer-reviewed papers presented at the Sustainable Concrete Materials and Structures in Construction 2020, held at Universiti Tun Hussein Onn Malaysia, Malaysia, on 24th August 2020. The contributions, prepared by international scientists and engineers, cover the latest advances in and innovative applications with the theme Towards Sustainable Green Concrete The articles in this book cater to academics, graduate students, researchers, as well as industrial practitioners working in the areas of concrete materials and building construction.
Masonry walls constitute the interface between the building's interior and the outdoor environment. Masonry walls are traditionally composed of fired-clay bricks (solid or perforated) or blocks (concrete or earth-based), but in the past (and even in the present) they were often associated as needing an extra special thermal and acoustical insulation layer. However, over more recent years investigations on thermal and acoustical features has led to the development of new improved bricks and blocks that no longer need these insulation layers. Traditional masonry units (fired-clay bricks, concrete or earth-based blocks) that don't offer improved performance in terms of thermal and acoustical insulation are a symbol of a low-technology past, that are far removed from the demands of sustainable construction.This book provides an up-to-date state-of-the-art review on the eco-efficiency of masonry units, particular emphasis is placed on the design, properties, performance, durability and LCA of these materials. Since masonry units are also an excellent way to reuse bulk industrial waste the book will be important in the context of the Revised Waste Framework Directive 2008/98/EC which states that the minimum reuse and recycling targets for construction and demolition waste (CDW) should be at least 70% by 2020. On the 9th of March 2011 the European Union approved the Regulation (EU) 305/2011, known as the Construction Products Regulation (CPR) and it will be enforced after the 1st of July 2013. The future commercialization of construction materials in Europe makes their environmental assessment mandatory meaning that more information related to the environmental performance of building materials is much needed. - Provides an authoritative guide to the eco-efficiency of masonry units - Examines the reuse of waste materials - Covers a range of materials including, clay, cement, earth and pumice
The challenges facing humanity in the 21st century include climate change, population growth, overconsumption of resources, overproduction of waste and increasing energy demands. For construction practitioners, responding to these challenges means creating a built environment that provides accommodation and infrastructure with better whole-life performance using lower volumes of primary materials, less non-renewable energy, wasting less and causing fewer disturbances to the natural environment. Concrete is ubiquitous in the built environment. It is therefore essential that it is used in the most sustainable way so practitioners must become aware of the range of sustainable concrete solutions available for construction. While sustainable development has been embedded into engineering curricula, it can be difficult for students and academics to be fully aware of the innovations in sustainable construction that are developed by the industry. Sustainable Concrete Solutions serves as an introduction to and an overview of the latest developments in sustainable concrete construction. It provides useful guidance, with further references, to students, researchers, academics and practitioners of all construction disciplines who are faced with the challenge of designing, specifying and constructing with concrete.
This book presents solutions for optimizing sustainable concrete fabrication techniques. It shows how to reinforce sustainable concrete by various waste materials such as glass waste, uncrushed cockle shell, plastic waste and ceramic tiles. It also reports on properties’ enhancement of high-strength concrete materials. The book presents an analysis of the environmental impact of waste materials’ use.
This book is mainly based on the results of the EU-funded UE-FP7 Project EnCoRe, which aimed to characterize the key physical and mechanical properties of a novel class of advanced cement-based materials incorporating recycled powders and aggregates and/or natural ingredients in order to allow partial or even total replacement of conventional constituents. More specifically, the project objectives were to predict the physical and mechanical performance of concrete with recycled aggregates; to understand the potential contribution of recycled fibers as a dispersed reinforcement in concrete matrices; and to demonstrate the feasibility and possible applications of natural fibers as a reinforcement in cementitious composites. All of these aspects are fully covered in the book. The opening chapters explain the material concept and design and discuss the experimental characterization of the physical, chemical, and mechanical properties of the recycled raw constituents, as well as of the cementitious composite incorporating them. The numerical models with potentialities for describing the behavior at material and structural level of constructions systems made by these composites are presented. Finally, engineering applications and guidelines for production and design are proposed.
The construction materials industry is a major user of the world’s resources. While enormous progress has been made towards sustainability, the scope and opportunities for improvements are significant. To further the effort for sustainable development, a conference on Sustainable Construction Materials and Technologies was held at Coventry University, Coventry, U.K., from June 11th - 13th, 2007, to highlight case studies and research on new and innovative ways of achieving sustainability of construction materials and technologies. This book presents selected, important contributions made at the conference. Over 190 papers from over 45 countries were accepted for presentation at the conference, of which approximately 100 selected papers are published in this book. The rest of the papers are published in two supplementary books. Topics covered in this book include: sustainable alternatives to natural sand, stone, and Portland cement in concrete; sustainable use of recyclable resources such as fly ash, ground municipal waste slag, pozzolan, rice-husk ash, silica fume, gypsum plasterboard (drywall), and lime in construction; sustainable mortar, concrete, bricks, blocks, and backfill; the economics and environmental impact of sustainable materials and structures; use of construction and demolition wastes, and organic materials (straw bale, hemp, etc.) in construction; sustainable use of soil, timber, and wood products; and related sustainable construction and rehabilitation technologies.
Until recently, much of the development of building materials has predominantly focused on producing cheaper, stronger and more durable construction materials. More recently attention has been given to the environmental issues in manufacturing, using, disposing and recycling of construction materials. Sustainability of construction materials brings together a wealth of recent research on the subject.The first part of the book gives a comprehensive and detailed analysis of the sustainability of the following building materials: aggregates; timber, wood and bamboo; vegetable fibres; masonry; cement, concrete and cement replacement materials; metals and alloys; glass; and engineered wood products. A final group of chapters cover the use of waste tyre rubber in civil engineering works, the durability of sustainable construction materials and nanotechnologies for sustainable construction.With its distinguished editor and international team of contributors, Sustainability of construction materials is a standard reference for anyone involved in the construction and civil engineering industries with an interest in the highly important topic of sustainability. - Provides a comprehensive and detailed analysis of the sustainability of a variety of construction materials ranging from wood and bamboo to cement and concrete - Assesses the durability of sustainable construction materials including the utilisation of waste tyre rubber and vegetable fibres - Collates a wealth of recent research including relevant case studies as well as an investigation into future trends
Unleash the timeless craft of masonry with "Mastering Masonry"—the definitive guide for aspiring builders and seasoned professionals alike. Immerse yourself in the intricate world of stone and brickwork as you explore the art and science of masonry through comprehensive tutorials and expert insights. Begin your journey with the foundational basics of mortar work. Dive into the essentials of mortar composition, uncovering the perfect blend for every project. Familiarize yourself with the tools that transform raw materials into masterpieces, from traditional instruments to modern innovations. Ground your skills with solid foundations, learning site preparation and base laying techniques that ensure enduring stability. Transition into the craft of building with brick and stone, discovering the secrets of material selection, impeccable bricklaying methods, and stone carving artistry. Elevate your architectural prowess as you master arch and lintel constructions, harnessing mathematical precision for structural integrity. Delve into the specialty techniques of tuckpointing and repointing, vital for both aesthetic finesse and structural soundness. Discover the beauty of veneers and decorative masonry, crafting stunning designs and applying creative techniques to achieve decorative excellence. Expand your expertise with advanced methods like dry stone construction and the integration of renewable materials. Navigate the complexities of working with concrete, from pouring and finishing slabs to restoring aged structures. Enhance your masonry with weatherproofing strategies and insulation techniques, ensuring longevity and thermal efficiency. Prioritize safety with comprehensive guidance on protective equipment, risk management, and emergency preparedness. Appreciate the rich history and cultural significance of masonry, understanding its evolution and iconic structures. Aspire towards a career in masonry with chapters on professional development, business opportunities, and valuable networking tips. Troubleshoot common problems with ease and prepare for the dynamic future of masonry driven by cutting-edge trends and technological innovations. "Mastering Masonry" is your gateway to building not just structures, but a lasting legacy. Embrace the art. Perfect the craft. Unleash your potential.