This book presents recent science and engineering research in the field of conventional and renewable energy, energy efficiency and optimization, discussing problems such as availability, peak load and reliability of sustainable supply for power to consumers. Such research is imperative since efficient and environmentally friendly solutions are critical in modern electricity production and transmission.
In recent years, the development of advanced structures for providing sustainable energy has been a topic at the forefront of public and political conversation. Many are looking for advancements on pre-existing sources and new and viable energy options to maintain a modern lifestyle. The Handbook of Research on Power and Energy System Optimization is a critical scholarly resource that examines the usage of energy in relation to the perceived standard of living within a country and explores the importance of energy structure augmentation. Featuring coverage on a wide range of topics including energy management, micro-grid, and distribution generation, this publication is targeted towards researchers, academicians, and students seeking relevant research on the augmentation of current energy structures to support existing standards of living.
This book highlights state-of-the-art research on renewable energy integration technology and suitable and efficient power generation, discussing smart grids, renewable energy grid integration, prediction control models, and econometric models for predicting the global solar radiation and factors that affect solar radiation, performance evaluation of photovoltaic systems, and improved energy consumption prediction models. It discusses several methods, algorithms, environmental data-based performance analyses, and experimental results to help readers gain a detailed understanding of the pros and cons of technologies in this rapidly growing area. Accordingly, it offers a valuable resource for students and researchers working on renewable energy optimization models.
Optimization in Renewable Energy Systems: Recent Perspectives covers all major areas where optimization techniques have been applied to reduce uncertainty or improve results in renewable energy systems (RES). Production of power with RES is highly variable and unpredictable, leading to the need for optimization-based planning and operation in order to maximize economies while sustaining performance. This self-contained book begins with an introduction to optimization, then covers a wide range of applications in both large and small scale operations, including optimum operation of electric power systems with large penetration of RES, power forecasting, transmission system planning, and DG sizing and siting for distribution and end-user premises. This book is an excellent choice for energy engineers, researchers, system operators, system regulators, and graduate students. - Provides chapters written by experts in the field - Goes beyond forecasting to apply optimization techniques to a wide variety of renewable energy system issues, from large scale to relatively small scale systems - Provides accompanying computer code for related chapters
This book presents innovative solutions utilising informatics to deal with various issues related to the COVID-19 outbreak. The book offers a collection of contemporary research and development on the management of Covid-19 using health data analytics, information exchange, knowledge sharing, the Internet of Things (IoT), and the Internet of Everything (IoE)-based solutions. The book also analyses the implementation, assessment, adoption, and management of these healthcare informatics solutions to manage the pandemic and future epidemics. The book is relevant to researchers, professors, students, and professionals in informatics and related topics.
Sustainable Power Generation: Current Status, Future Challenges, and Perspectives addresses emerging problems faced by the transition to sustainable electricity generation and combines perspectives of engineering and economics to provide a well-rounded overview. This book features an in-depth discussion of the main aspects of sustainable energy and the infrastructure of existing technologies. It goes on to evaluate natural resources that are sustainable and convenient forms of energy, and finishes with an investigation of the environmental effects of energy systems and power generating systems of the future. Other sections tackle fundamental topics such as thermal power, nuclear energy, bioenergy, hydropower, challenges and risks to sustainable options, and emerging technologies that support global power trends. Sustainable Power Generation explores the future of sustainable electricity generation, highlighting topics such as energy justice, emerging competences, and major transitions that need to be navigated. This is an ideal reference for researchers, engineers, and other technical specialists working in the energy sector, as well as environmental specialists and policy makers.
The electric vehicle market has been gradually gaining prominence in the world due to the rise in pollution levels caused by traditional IC engine-based vehicles. The advantages of electric vehicles are multi-pronged in terms of cost, energy efficiency, and environmental impact. The running and maintenance cost are considerably less than traditional models. The harmful exhaust emissions are reduced, besides the greenhouse gas emissions, when the electric vehicle is supplied from a renewable energy source. However, apart from some Western nations, many developing and underdeveloped countries have yet to take up this initiative. This lack of enthusiasm has been primarily attributed to the capital investment required for charging infrastructure and the slow transition of energy generation from the fossil fuel to the renewable energy format. Currently, there are very few charging stations, and the construction of the same needs to be ramped up to supplement the growth of electric vehicles. Grid integration issues also crop up when the electric vehicle is used to either do supply addition to or draw power from the grid. These problems need to be fixed at all the levels to enhance the future of energy efficient transportation. Electric Vehicles and the Future of Energy Efficient Transportation explores the growth and adoption of electric vehicles for the purpose of sustainable transportation and presents a critical analysis in terms of the economics, technology, and environmental perspectives of electric vehicles. The chapters cover the benefits and limitations of electric vehicles, techno-economic feasibility of the technologies being developed, and the impact this has on society. Specific points of discussion include electric vehicle architecture, wireless power transfer, battery management, and renewable resources. This book is of interest for individuals in the automotive sector and allied industries, policymakers, practitioners, engineers, technicians, researchers, academicians, and students looking for updated information on the technology, economics, policy, and environmental aspects of electric vehicles.
As the world continues to evolve technologically, people depend more heavily on energy-dependent systems to fulfill their daily needs. However, as these needs grow, it is important to develop sustainable systems that are reliable, as well as environmentally sound. Sustaining Power Resources through Energy Optimization and Engineering highlights the sustainable development and efficient operation of energy systems being provided to consumers. Featuring emergent research and trends within the area of power optimization and engineering, this book is a crucial reference source for engineers, researchers, sustainability experts, and professionals interested in the improvement and usage of infrastructural energy systems.
Faced with the climate change phenomena, humanity has had to now contend with numerous changes, including our attitude environment protection, and also with depletion of classical energy resources. These have had consequences in the power production sector, which was already struggling with negative public opinion on nuclear energy, but a favorable perception of renewable energy resources. The objective of this edited volume is to review all these changes and to present solutions for future power generation.