Linear Stochastic Systems

Linear Stochastic Systems

Author: Peter E. Caines

Publisher: SIAM

Published: 2018-06-12

Total Pages: 892

ISBN-13: 1611974704

DOWNLOAD EBOOK

Linear Stochastic Systems, originally published in 1988, is today as comprehensive a reference to the theory of linear discrete-time-parameter systems as ever. Its most outstanding feature is the unified presentation, including both input-output and state space representations of stochastic linear systems, together with their interrelationships. The author first covers the foundations of linear stochastic systems and then continues through to more sophisticated topics including the fundamentals of stochastic processes and the construction of stochastic systems; an integrated exposition of the theories of prediction, realization (modeling), parameter estimation, and control; and a presentation of stochastic adaptive control theory. Written in a clear, concise manner and accessible to graduate students, researchers, and teachers, this classic volume also includes background material to make it self-contained and has complete proofs for all the principal results of the book. Furthermore, this edition includes many corrections of errata collected over the years.


Linear Estimation

Linear Estimation

Author: Thomas Kailath

Publisher: Pearson

Published: 2000

Total Pages: 888

ISBN-13:

DOWNLOAD EBOOK

This original work offers the most comprehensive and up-to-date treatment of the important subject of optimal linear estimation, which is encountered in many areas of engineering such as communications, control, and signal processing, and also in several other fields, e.g., econometrics and statistics. The book not only highlights the most significant contributions to this field during the 20th century, including the works of Wiener and Kalman, but it does so in an original and novel manner that paves the way for further developments. This book contains a large collection of problems that complement it and are an important part of piece, in addition to numerous sections that offer interesting historical accounts and insights. The book also includes several results that appear in print for the first time. FEATURES/BENEFITS Takes a geometric point of view. Emphasis on the numerically favored array forms of many algorithms. Emphasis on equivalence and duality concepts for the solution of several related problems in adaptive filtering, estimation, and control. These features are generally absent in most prior treatments, ostensibly on the grounds that they are too abstract and complicated. It is the authors' hope that these misconceptions will be dispelled by the presentation herein, and that the fundamental simplicity and power of these ideas will be more widely recognized and exploited. Among other things, these features already yielded new insights and new results for linear and nonlinear problems in areas such as adaptive filtering, quadratic control, and estimation, including the recent Hà theories.


Bayesian Filtering and Smoothing

Bayesian Filtering and Smoothing

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2013-09-05

Total Pages: 255

ISBN-13: 110703065X

DOWNLOAD EBOOK

A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.


Optimal Filtering

Optimal Filtering

Author: Brian D. O. Anderson

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 370

ISBN-13: 0486136892

DOWNLOAD EBOOK

Graduate-level text extends studies of signal processing, particularly regarding communication systems and digital filtering theory. Topics include filtering, linear systems, and estimation; discrete-time Kalman filter; time-invariant filters; more. 1979 edition.