This innovative reference collects state-of-the-art procedures for the construction and design of nanoparticles and porous material while suggesting appropriate areas of application. Presenting both synthesis and characterization protocols, Surfaces of Nanoparticles and Porous Materials contains over 3000 references, tables, equations, drawings, and photographs. It examines the thermodynamics and kinetics of adsorption involving organic and inorganic liquids, solids, and gaseous media.. Topics include characterization, transport processes, diffusion, and the adsorption of heavy metals, ions, proteins, and pharmaceutical organics.
Nanoporous Materials III contains the invited lectures and peer-reviewed oral and poster contributions to be presented at the 3rd Conference on Nanoporous Materials, which will be hosted in Ottawa, Canada, June 2002. The work covers complementary approaches to and recent advances in the field of nanostructured materials with pore sizes larger than 1nm, such as periodic mesoporous molecular sieves M41S and FSM16 and related materials including clays, carbon molecular sieves, colloidal crystal templated organic and inorganic materials, porous polymers and sol gels. The broad range of topics covered in relation to the synthesis and characterization of ordered mesoporous materials are of great importance for advanced adsorption, catalytic and separation processes as well as the development of nanotechnology. The contents of this title are based on topics to be discussed by invited lecturers, which deal with periodic mesoporous organosilicas, stability and catalytic activity of aluminosilicate mesostructures, electron microscopy studies of ordered materials, imprinted polymers and highly porous metal-organic frameworks. The other contributions deal with tailoring the surface and structural properties of nanoporous materials, giving a detailed characterization as well as demonstrating their usefulness for advanced adsorption and catalytic applications.
This book is written in honor of Prof. Francisco Rodriguez-Reinoso, who has made significant contributions in the area of porous materials such as active carbons and graphenes. It details the preparation of porous materials, including carbonaceous, zeolitic, and siliceous materials, MOFs, aerogels, and xerogels, describing the characterization techniques and the interpretation of the results, and highlighting common errors that can occur during the process. This book subsequently presents the use of modeling based on thermodynamics to describe the materials. Lastly, it illustrates a number of current environmental protection applications in the context of both water and air.
A state-of-the-art reference, Metal Nanoparticles offers the latest research on the synthesis, characterization, and applications of nanoparticles. Following an introduction of structural, optical, electronic, and electrochemical properties of nanoparticles, the book elaborates on nanoclusters, hyper-Raleigh scattering, nanoarrays, and several applications including single electron devices, chemical sensors, biomolecule sensors, and DNA detection. The text emphasizes how size, shape, and surface chemistry affect particle performance throughout. Topics include synthesis and formation of nanoclusters, nanosphere lithography, modeling of nanoparticle optical properties, and biomolecule sensors.
Porous materials are of scientific and technological importance because of the presence of voids of controllable dimensions at the atomic, molecular, and nanometer scales, enabling them to discriminate and interact with molecules and clusters. Interestingly the big deal about this class of materials is about the “nothingness” within — the pore space. International Union of Pure and Applied Chemistry (IUPAC) classifies porous materials into three categories — micropores of less than 2 nm in diameter, mesopores between 2 and 50 nm, and macropores of greater than 50 nm. In this book, nanoporous materials are defined as those porous materials with pore diameters less than 100 nm.Over the last decade, there has been an ever increasing interest and research effort in the synthesis, characterization, functionalization, molecular modeling and design of nanoporous materials. The main challenges in research include the fundamental understanding of structure-property relations and tailor-design of nanostructures for specific properties and applications. Research efforts in this field have been driven by the rapid growing emerging applications such as biosensor, drug delivery, gas separation, energy storage and fuel cell technology, nanocatalysis and photonics. These applications offer exciting new opportunities for scientists to develop new strategies and techniques for the synthesis and applications of these materials.This book provides a series of systematic reviews of the recent developments in nanoporous materials. It covers the following topics: (1) synthesis, processing, characterization and property evaluation; (2) functionalization by physical and/or chemical treatments; (3) experimental and computational studies on fundamental properties, such as catalytic effects, transport and adsorption, molecular sieving and biosorption; (4) applications, including photonic devices, catalysis, environmental pollution control, biological molecules separation and isolation, sensors, membranes, hydrogen and energy storage, etc./a
An advanced exploration ofwater-rock interactions Based on the author's fifteen years of teaching and tried-and-tested experiences in the classroom, here is a comprehensive exploration of water-rock interactions. Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale covers aspects ranging from the theory of charged particle surfaces to how minerals grow and dissolve to new frontiers in W-R interactions such as nanoparticles, geomicrobiology, and climate change. Providing basic conceptual understanding along with more complex subject matter, Professor Patricia Maurice encourages students to look beyond the text to ongoing research in the field. Designed to engage the learner, the book features: Numerous case studies to contextualize concepts Practice and thought questions at the end of each chapter Broad coverage from basic theory to cutting-edge topics such as nanotechnology Both basic and applied science This text goes beyond W-R interactions to touch on a broad range of environmental disciplines. While written for advanced undergraduate and graduate students primarily in geochemistry and soil chemistry, Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale will serve the needs of such diverse fields as environmental engineering, hydrogeology, physics, biology, and environmental chemistry.
This book presents synthesis, characterization, and applications of macroporous, mesoporous, nanoporous, hierarchical porous, porous metals, and porous ceramics. Special emphasis is given to the preparation of porous activated carbon materials and porous ionic liquid-derived materials for CO2 emissions mitigation. Additionally, a chapter includes the physical and mathematical modeling in porous media. Many analytical techniques for characterization are discussed in this book. Also, the biomedical and industrial applications of porous materials in adsorption, catalysis, biosensors, drug delivery, nanotechnology are described. The content helps solving fundamental and applied problems in porous materials with length scales varying from macro- to nano-level.
Details the source, release, exposure, adsorption, aggregation, bioavailability, transport, transformation, and modeling of engineered nanoparticles found in many common products and applications Covers synthesis, environmental application, detection, and characterization of engineered nanoparticles Details the toxicity and risk assessment of engineered nanoparticles Includes topics on the transport, transformation, and modeling of engineered nanoparticles Presents the latest developments and knowledge of engineered nanoparticles Written by world leading experts from prestigious universities and companies
The first comprehensive textbook on the timely and rapidly developing topic of inorganic porous materials This is the first textbook to completely cover a broad range of inorganic porous materials. It introduces the reader to the development of functional porous inorganic materials, from the synthetic zeolites in the 50’s, to today’s hybrid materials such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and related networks. It also provides the necessary background to understand how porous materials are organized, characterized, and applied in adsorption, catalysis, and many other domains. Additionally, the book explains characterization and application from the materials scientist viewpoint, giving the reader a practical approach on the characterization and application of the respective materials. Introduction to Inorganic Porous Materials begins by describing the basic concepts of porosity and the different types of pores, surfaces, and amorphous versus crystalline materials, before introducing readers to nature’s porous materials. It then goes on to cover everything from adsorption and catalysis to amorphous materials such as silica to inorganic carbons and Periodic Mesoporous Organosilicas (PMOs). It discusses the synthesis and applications of MOFs and the broad family of COFs. It concludes with a look at future prospects and emerging trends in the field. The only complete book of its kind to cover the wide variety of inorganic and hybrid porous materials A comprehensive reference and outstanding tool for any course on inorganic porous materials, heterogeneous catalysis, and adsorption Gives students and investigators the opportunity to learn about porous materials, how to characterize them, and understand how they can be applied in different fields Introduction to Inorganic Porous Materials is an excellent book for students and professionals of inorganic chemistry and materials science with an interest in porous materials, functional inorganic materials, heterogeneous catalysis and adsorption, and solid state characterization techniques.
Numerical Modeling of Nanoparticle Transport in Porous Media: MATLAB/PYTHON Approach focuses on modeling and numerical aspects of nanoparticle transport within single- and two-phase flow in porous media. The book discusses modeling development, dimensional analysis, numerical solutions and convergence analysis. Actual types of porous media have been considered, including heterogeneous, fractured, and anisotropic. Moreover, different interactions with nanoparticles are studied, such as magnetic nanoparticles, ferrofluids and polymers. Finally, several machine learning techniques are implemented to predict nanoparticle transport in porous media. This book provides a complete full reference in mathematical modeling and numerical aspects of nanoparticle transport in porous media. It is an important reference source for engineers, mathematicians, and materials scientists who are looking to increase their understanding of modeling, simulation, and analysis at the nanoscale. - Explains the major simulation models and numerical techniques used for predicting nanoscale transport phenomena - Provides MATLAB codes for most of the numerical simulation and Python codes for machine learning calculations - Uses examples and results to illustrate each model type to the reader - Assesses major application areas for each model type