This issue documents the state of the field in magnetic thin film processing using electrochemical methods including film nucleation and growth, structure of deposits, stress and micromagnetics of films, thermal and magnetic annealing, electrochemical and electroless plating systems, etching, process chemistry, tool design, and process control.
Plastics Materials and Processes: A Concise Encyclopedia is a resource for anyone with an interest in plastic materials and processes, from seasoned professionals to laypeople. Arranged in alphabetical order, it clearly explains all of the materials and processes as well as their major application areas and usages. Plastics Materials and Processes: A Concise Encyclopedia: Discusses and describes applications and practical uses of the materials and processes. Clear definitions and sufficient depth to satisfy the information seekers needs
This book provides methods to train process operators to solve challenging problems. The book is split into two parts. The first part consists of two parts; first developing a daily monitoring system and second providing a structured 5 step problem solving approach that combines cause and effect problem solving thinking with the formulation of theoretically correct hypotheses. The 5 step approach emphasizes the classical problem solving approach (defining the sequence of events) with the addition of the steps of formulating a theoretically correct working hypothesis, providing a means to test the hypothesis, and providing a foolproof means to eliminate the problem. The initial part of the book focuses on defining the problem that must be solved and obtaining the location, time and quantity based specifications of the problem. This part of the book also presents techniques to find and define problems at an early point before they progress to the critical level. The second part of the book deals with the utilization of fundamental chemical engineering skills to develop a technically correct working hypothesis that is the key to successful problem solving. The primary emphasis is on simple pragmatic calculation techniques that are theoretically correct. It is believed that any operator can perform these calculations if he is provided the correct prototype. Throughout the book, the theory behind each pragmatic calculation technique is explained in understandable terms prior to presenting the author's approach. These techniques have been developed by the author in 50+ years of industrial experience. The book includes many sample problems and examples of real world problem solving. Using these techniques, theoretically correct working hypotheses can be developed in an expedient fashion.
Handbook of Material Weathering, Sixth Edition, is an essential guide to the effects of weathering on polymers and industrial products, presenting theory, stress factors, methods of weathering and testing and the effects of additives and environmental stress cracking. The book provides graphical illustrations and numerical data to examine the weathering of major polymers and industrial products, including mechanisms of degradation, effect of thermal processes, and characteristic changes in properties. The book also discusses recycling, corrosion and weathering, and the weathering of stone. This sixth edition updates this seminal work with recent developments and the latest data. Polymers and industrial plastics products are widely used in environments where they are vulnerable to the effects of weathering. Weathering stress factors can lead to deterioration or even complete failure. Material durability is therefore vital, and products for outdoor usage or actinic exposure are designed so that the effects of artificial and natural weathering are minimized. This book is an important reference source for those involved in studying material durability, producing materials for outdoor use and actinic exposure, research chemists in the photochemistry field, chemists and material scientists designing new materials, users of manufactured products, those who control the quality of manufactured products and students who want to apply their knowledge to real materials. - Offers detailed coverage of theory, stress factors and methods of weathering - Provides specific information and numerical data for 52 polymers and 42 groups of industrial products, including characteristic changes and degradation mechanisms - Discusses major additional topics, such as weathered materials for recycling and the interrelation between corrosion and weathering - Provides graphical illustrations and numerical data to examine the weathering of major polymers and industrial products
Surface Modification by Solid State Processing describes friction-based surfacing techniques for surface modification to improve resistance to corrosion and wear, also changing surface chemistry. Surface conditions are increasingly demanding in industrial applications and surface modification can reduce manufacturing and maintenance costs, leading to improved component performance, reliability and lifetime. Friction-based technologies are promising solid state processing technologies, particularly for light alloys, in the manufacturing of composite surface and functionally graded materials This title is divided into five chapters, and after an introduction the book covers friction surfacing; friction stir processing; surface reinforcements of light alloys; and characterization techniques based on eddy currents. Describes friction-based surfacing techniques for surface modification to improve resistance to corrosion and wear, and change surface chemistry Emphasizes industrial applications Describes existing and emerging techniques
This book offers a timely snapshot of innovative research and developments at the interface between manufacturing, materials and mechanical engineering, and quality assurance. It covers various manufacturing processes, such as grinding, boring, milling, broaching, coatings, including additive manufacturing. It focuses on cutting, abrasive, stamping-drawing processes, shot peening, and complex treatment. It describes temperature distribution, twisting deformation, defect formation process, failure analysis, as well as the convective heat exchange and non-uniform nanocapillary fluid cooling, highlighting the growing role of quality control, integrated management systems, and economic efficiency evaluation. It also covers vibration damping, dynamic behavior, failure probability, and strength performance methods for aviation, heterogeneous, permeable porous, and other types of materials. Gathering the best papers presented at the 4th Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2022), held in Odessa, Ukraine, on September 6–9, 2022, this book offers a timely overview and extensive information on trends and technologies in manufacturing, mechanical, and materials engineering, and quality assurance. It is also intended to facilitate communication and collaboration between different groups working on similar topics and to offer a bridge between academic and industrial researchers.
Reviews all known antifoam mechanisms, and discusses the appropriate practical approaches for solving foam control problems in a variety of industrial contexts. These range from crude oil production to detergent formulation.
This book draws upon the science of tribology to understand, predict and improve abrasive machining processes. Pulling together information on how abrasives work, the authors, who are renowned experts in abrasive technology, demonstrate how tribology can be applied as a tool to improve abrasive machining processes. Each of the main elements of the abrasive machining system are looked at, and the tribological factors that control the efficiency and quality of the processes are described. Since grinding is by far the most commonly employed abrasive machining process, it is dealt with in particular detail. Solutions are posed to many of the most commonly experienced industrial problems, such as poor accuracy, poor surface quality, rapid wheel wear, vibrations, work-piece burn and high process costs. This practical approach makes this book an essential tool for practicing engineers. Uses the science of tribology to improve understanding and of abrasive machining processes in order to increase performance, productivity and surface quality of final products A comprehensive reference on how abrasives work, covering kinematics, heat transfer, thermal stresses, molecular dynamics, fluids and the tribology of lubricants Authoritative and ground-breaking in its first edition, the 2nd edition includes 30% new and updated material, including new topics such as CMP (Chemical Mechanical Polishing) and precision machining for micro-and nano-scale applications