Acta Numerica has established itself as the prime forum for the presentation of definitive reviews of numerical analysis topics. The invited review papers, by leaders in their respective fields, allow researchers and graduate students alike quickly to grasp trends and developments. Highlights of the 1995 issue include articles on sequential quadratic programming, mesh adaption, free boundary problems and particle methods in continuum computations.
Nonlinear Programming, 4 focuses on linear, quadratic, and nonlinear programming, unconstrained minimization, nonsmooth and discrete optimization, ellipsoidal methods, linear complementarity problems, and software evaluation. The selection first elaborates on an upper triangular matrix method for quadratic programming, solving quadratic programs by an exact penalty function, and QP-based methods for large-scale nonlinearly constrained optimization. Discussions focus on large-scale linearly constrained optimization, search direction for superbasic variables, finite convergence, basic properties, comparison of three active set methods, and QP-based methods for dense problems. The book then examines an iterative linear programming algorithm based on an augmented Lagrangian and iterative algorithms for singular minimization problems. The publication ponders on the derivation of symmetric positive definite secant updates, preconditioned conjugate gradient methods, and finding the global minimum of a function of one variable using the method of constant signed higher order derivatives. Topics include effects of calculation errors, application to polynomial minimization, using moderate additional storage, updating Cholesky factors, and utilizing sparse second order information. The selection is a valuable source of data for researchers interested in nonlinear programming.
Nonlinear Programming 3 covers the proceedings of the Special Interest Group on Mathematical Programming Symposium conducted by the Computer Sciences Department at the University of Wisconsin, Madison, on July 11-13, 1977. This book is composed of 17 chapters. The first eight chapters describe some of the most effective methods available for solving linearly and nonlinearly constrained optimization problems. The subsequent chapter gives algorithms for the solution of nonlinear equations together with computational experience. Other chapters provide some applications of optimization in operations research and a measurement procedure for optimization algorithm efficiency. These topics are followed by discussion of the methods for solving large quadratic programs and algorithms for solving stationary and fixed point problems. The last chapters consider the minimization of certain types of nondifferentiable functions and a type of Newton method. This book will prove useful to mathematicians and computer scientists.
This volume provides a general overview on the state-of-the-art and future developments in automation and control. The application of systems and control in all areas is covered, from the social and cultural effects of control, to control in mineral and metal processing. This volume will be an invaluable source of information to all those interested in the areas of automation and control.
COMPREHENSIVE COVERAGE OF NONLINEAR PROGRAMMING THEORY AND ALGORITHMS, THOROUGHLY REVISED AND EXPANDED Nonlinear Programming: Theory and Algorithms—now in an extensively updated Third Edition—addresses the problem of optimizing an objective function in the presence of equality and inequality constraints. Many realistic problems cannot be adequately represented as a linear program owing to the nature of the nonlinearity of the objective function and/or the nonlinearity of any constraints. The Third Edition begins with a general introduction to nonlinear programming with illustrative examples and guidelines for model construction. Concentration on the three major parts of nonlinear programming is provided: Convex analysis with discussion of topological properties of convex sets, separation and support of convex sets, polyhedral sets, extreme points and extreme directions of polyhedral sets, and linear programming Optimality conditions and duality with coverage of the nature, interpretation, and value of the classical Fritz John (FJ) and the Karush-Kuhn-Tucker (KKT) optimality conditions; the interrelationships between various proposed constraint qualifications; and Lagrangian duality and saddle point optimality conditions Algorithms and their convergence, with a presentation of algorithms for solving both unconstrained and constrained nonlinear programming problems Important features of the Third Edition include: New topics such as second interior point methods, nonconvex optimization, nondifferentiable optimization, and more Updated discussion and new applications in each chapter Detailed numerical examples and graphical illustrations Essential coverage of modeling and formulating nonlinear programs Simple numerical problems Advanced theoretical exercises The book is a solid reference for professionals as well as a useful text for students in the fields of operations research, management science, industrial engineering, applied mathematics, and also in engineering disciplines that deal with analytical optimization techniques. The logical and self-contained format uniquely covers nonlinear programming techniques with a great depth of information and an abundance of valuable examples and illustrations that showcase the most current advances in nonlinear problems.
A comprehensive treatment of nonlinear programming concepts and algorithms, especially as they apply to challenging applications in chemical process engineering.
About 60 scientists and students attended the 96' International Conference on Nonlinear Programming, which was held September 2-5 at Institute of Compu tational Mathematics and Scientific/Engineering Computing (ICMSEC), Chi nese Academy of Sciences, Beijing, China. 25 participants were from outside China and 35 from China. The conference was to celebrate the 60's birthday of Professor M.J.D. Powell (Fellow of Royal Society, University of Cambridge) for his many contributions to nonlinear optimization. On behalf of the Chinese Academy of Sciences, vice president Professor Zhi hong Xu attended the opening ceremony of the conference to express his warm welcome to all the participants. After the opening ceremony, Professor M.J.D. Powell gave the keynote lecture "The use of band matrices for second derivative approximations in trust region methods". 13 other invited lectures on recent advances of nonlinear programming were given during the four day meeting: "Primal-dual methods for nonconvex optimization" by M. H. Wright (SIAM President, Bell Labs), "Interior point trajectories in semidefinite programming" by D. Goldfarb (Columbia University, Editor-in-Chief for Series A of Mathe matical Programming), "An approach to derivative free optimization" by A.
Extremal Optimization: Fundamentals, Algorithms, and Applications introduces state-of-the-art extremal optimization (EO) and modified EO (MEO) solutions from fundamentals, methodologies, and algorithms to applications based on numerous classic publications and the authors’ recent original research results. It promotes the movement of EO from academic study to practical applications. The book covers four aspects, beginning with a general review of real-world optimization problems and popular solutions with a focus on computational complexity, such as "NP-hard" and the "phase transitions" occurring on the search landscape. Next, it introduces computational extremal dynamics and its applications in EO from principles, mechanisms, and algorithms to the experiments on some benchmark problems such as TSP, spin glass, Max-SAT (maximum satisfiability), and graph partition. It then presents studies on the fundamental features of search dynamics and mechanisms in EO with a focus on self-organized optimization, evolutionary probability distribution, and structure features (e.g., backbones), which are based on the authors’ recent research results. Finally, it discusses applications of EO and MEO in multiobjective optimization, systems modeling, intelligent control, and production scheduling. The authors present the advanced features of EO in solving NP-hard problems through problem formulation, algorithms, and simulation studies on popular benchmarks and industrial applications. They also focus on the development of MEO and its applications. This book can be used as a reference for graduate students, research developers, and practical engineers who work on developing optimization solutions for those complex systems with hardness that cannot be solved with mathematical optimization or other computational intelligence, such as evolutionary computations.
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.