This proceedings volume is devoted to simulation and parallel computing related to nonlinear problems. One of its fundamental aims is the study of how the efforts of computer and computational scientists may be combined to develop most modern simulation environments of nonlinear systems.
Mathematical modelling is ubiquitous. Almost every book in exact science touches on mathematical models of a certain class of phenomena, on more or less speci?c approaches to construction and investigation of models, on their applications, etc. As many textbooks with similar titles, Part I of our book is devoted to general qu- tions of modelling. Part II re?ects our professional interests as physicists who spent much time to investigations in the ?eld of non-linear dynamics and mathematical modelling from discrete sequences of experimental measurements (time series). The latter direction of research is known for a long time as “system identi?cation” in the framework of mathematical statistics and automatic control theory. It has its roots in the problem of approximating experimental data points on a plane with a smooth curve. Currently, researchers aim at the description of complex behaviour (irregular, chaotic, non-stationary and noise-corrupted signals which are typical of real-world objects and phenomena) with relatively simple non-linear differential or difference model equations rather than with cumbersome explicit functions of time. In the second half of the twentieth century, it has become clear that such equations of a s- ?ciently low order can exhibit non-trivial solutions that promise suf?ciently simple modelling of complex processes; according to the concepts of non-linear dynamics, chaotic regimes can be demonstrated already by a third-order non-linear ordinary differential equation, while complex behaviour in a linear model can be induced either by random in?uence (noise) or by a very high order of equations.
This edited volume comprises invited chapters that cover five areas of the current and the future development of intelligent systems and information sciences. Half of the chapters were presented as invited talks at the Workshop "Future Directions for Intelligent Systems and Information Sciences" held in Dunedin, New Zealand, 22-23 November 1999 after the International Conference on Neuro-Information Processing (lCONIPI ANZIISI ANNES '99) held in Perth, Australia. In order to make this volume useful for researchers and academics in the broad area of information sciences I invited prominent researchers to submit materials and present their view about future paradigms, future trends and directions. Part I contains chapters on adaptive, evolving, learning systems. These are systems that learn in a life-long, on-line mode and in a changing environment. The first chapter, written by the editor, presents briefly the paradigm of Evolving Connectionist Systems (ECOS) and some of their applications. The chapter by Sung-Bae Cho presents the paradigms of artificial life and evolutionary programming in the context of several applications (mobile robots, adaptive agents of the WWW). The following three chapters written by R.Duro, J.Santos and J.A.Becerra (chapter 3), GCoghill . (chapter 4), Y.Maeda (chapter 5) introduce new techniques for building adaptive, learning robots.
This volume covers issues in parallel and distributed processing. Coverage includes: communications; application; caching; scheduling; distributed systems; design and verification; and real-time data organization."
Publishes papers that report results of research in statistical physics, plasmas, fluids, and related interdisciplinary topics. There are sections on (1) methods of statistical physics, (2) classical fluids, (3) liquid crystals, (4) diffusion-limited aggregation, and dendritic growth, (5) biological physics, (6) plasma physics, (7) physics of beams, (8) classical physics, including nonlinear media, and (9) computational physics.