(Sub)-millimeter Wave On-wafer Calibration and Device Characterization

(Sub)-millimeter Wave On-wafer Calibration and Device Characterization

Author: Marco Cabbia

Publisher:

Published: 2021

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Precision measurements play a crucial role in electronic engineering, particularly in the characterization of silicon-based heterojunction bipolar transistors (HBTs) embedded into devices for THz applications using the BiCMOS technology. Thanks to ongoing innovations in terms of nanoscale technology manufacturing, devices capable of operating in the sub-millimeter wave region are becoming a reality, and need to support the demand for high frequency circuits and systems. To have accurate models at such frequencies, it is no longer possible to limit the parameter extraction below 110 GHz, and new techniques for obtaining reliable measurements of passive and active devices must be investigated.In this thesis, we examine the on-wafer S-parameters characterization of various passive test structures and SiGe HBTs in STMicroelectronics' B55 technology, up to 500 GHz. We start with an introduction of the measuring equipment usually employed for this type of analysis, then moving on to the various probe stations adopted at the IMS Laboratory, and finally focusing on calibration and deembedding techniques, reviewing the major criticalities of high-frequency characterization and comparing two on-wafer calibration algorithms (SOLT and TRL) up to the WR-2.2 band.Two photomask production runs for on-wafer characterization, both designed at IMS, are considered: we introduce a new floorplan design and evaluate its ability to limit parasitic effects as well as the effect of the environment (substrate, neighbors, and crosstalk). For our analysis, we rely on electromagnetic simulations and joint device model + probe EM simulations, both including probe models for an evaluation of measurement results closer to real-world conditions.Finally, we present some test structures to evaluate unwanted impacts on millimeter wave measurements and novel transmission line design solutions. Two promising designs are carefully studied: the "M3 layout", which aims to characterize the DUT in a single-tier calibration, and the "meander lines", which keeps the inter-probe distance constant by avoiding any sort of probe displacement during on-wafer measurements.


On-Wafer Calibration Techniques Enabling Accurate Characterization of High-Performance Silicon Devices at the mm-Wave Range and Beyond

On-Wafer Calibration Techniques Enabling Accurate Characterization of High-Performance Silicon Devices at the mm-Wave Range and Beyond

Author: Andrej Rumiantsev

Publisher: CRC Press

Published: 2022-09-01

Total Pages: 279

ISBN-13: 1000792854

DOWNLOAD EBOOK

The increasing demand for more content, services, and security drives the development of high-speed wireless technologies, optical communication, automotive radar, imaging and sensing systems and many other mm-wave and THz applications. S-parameter measurement at mm-wave and sub-mm wave frequencies plays a crucial role in the modern IC design debug. Most importantly, however, is the step of device characterization for development and optimization of device model parameters for new technologies. Accurate characterization of the intrinsic device in its entire operation frequency range becomes extremely important and this task is very challenging. This book presents solutions for accurate mm-wave characterization of advanced semiconductor devices. It guides through the process of development, implementation and verification of the in-situ calibration methods optimized for high-performance silicon technologies. Technical topics discussed in the book include: Specifics of S-parameter measurements of planar structures Complete mathematical solution for lumped-standard based calibration methods, including the transfer Thru-Match-Reflect (TMR) algorithms Design guideline and examples for the on-wafer calibration standards realized in both advanced SiGe BiCMOS and RF CMOS processes Methods for verification of electrical characteristics of calibration standards and accuracy of the in-situ calibration results Comparison of the new technique vs. conventional approaches: the probe-tip calibration and the pad parasitic de-embedding for various device types, geometries and model parameters New aspects of the on-wafer RF measurements at mmWave frequency range and calibration assurance.


On-Wafer Calibration Techniques Enabling Accurate Characterization of High-Performance Silicon Devices at the Mm-Wave Range and Beyond

On-Wafer Calibration Techniques Enabling Accurate Characterization of High-Performance Silicon Devices at the Mm-Wave Range and Beyond

Author: Andrej Rumiantsev

Publisher: Electronic Materials and Devic

Published: 2019-05-30

Total Pages: 0

ISBN-13: 9788770221122

DOWNLOAD EBOOK

The increasing demand for more content, services, and security drives the development of high-speed wireless technologies, optical communication, automotive radar, imaging and sensing systems and many other mm-wave and THz applications. S-parameter measurement at mm-wave and sub-mm wave frequencies plays a crucial role in the modern IC design debug. Most importantly, however, is the step of device characterization for development and optimization of device model parameters for new technologies. Accurate characterization of the intrinsic device in its entire operation frequency range becomes extremely important and this task is very challenging. This book presents solutions for accurate mm-wave characterization of advanced semiconductor devices. It guides through the process of development, implementation and verification of the in-situ calibration methods optimized for high-performance silicon technologies. Technical topics discussed in the book include: Specifics of S-parameter measurements of planar structures Complete mathematical solution for lumped-standard based calibration methods, including the transfer Thru-Match-Reflect (TMR) algorithms Design guideline and examples for the on-wafer calibration standards realized in both advanced SiGe BiCMOS and RF CMOS processes Methods for verification of electrical characteristics of calibration standards and accuracy of the in-situ calibration results Comparison of the new technique vs. conventional approaches: the probe-tip calibration and the pad parasitic de-embedding for various device types, geometries and model parameters New aspects of the on-wafer RF measurements at mmWave frequency range and calibration assurance.


Microwave De-embedding

Microwave De-embedding

Author: Gilles Dambrine

Publisher: Elsevier Inc. Chapters

Published: 2013-11-09

Total Pages: 42

ISBN-13: 0128068566

DOWNLOAD EBOOK

This chapter aims to describe experimental tools and techniques used for on-wafer millimeter (mm)-wave characterizations of silicon-based devices under the small-signal regime. We discuss the basics of scattering parameters (S parameters), high-frequency (HF) noise concept and measurement facilities, and expert details concerning experimental procedures. In this chapter, we describe first the basic notions of the S-parameters concept and its limitations, as well of as those HF noise. Secondly, the main experimental tools such as mm-wave vectorial network analyzer, noise setup, and on-wafer station are depicted. The third part concerns the description and the methodology of on-wafer calibration and de-embedding techniques applied for mm-wave advanced silicon devices. Finally, the last section focuses on the presentation and description of several examples of device characterizations. The main objective of this chapter is to propose a tradeoff between basic information and details of experience.


Advanced Millimeter-wave Technologies

Advanced Millimeter-wave Technologies

Author: Duixian Liu

Publisher: John Wiley & Sons

Published: 2009-03-03

Total Pages: 850

ISBN-13: 9780470742952

DOWNLOAD EBOOK

This book explains one of the hottest topics in wireless and electronic devices community, namely the wireless communication at mmWave frequencies, especially at the 60 GHz ISM band. It provides the reader with knowledge and techniques for mmWave antenna design, evaluation, antenna and chip packaging. Addresses practical engineering issues such as RF material evaluation and selection, antenna and packaging requirements, manufacturing tolerances, antenna and system interconnections, and antenna One of the first books to discuss the emerging research and application areas, particularly chip packages with integrated antennas, wafer scale mmWave phased arrays and imaging Contains a good number of case studies to aid understanding Provides the antenna and packaging technologies for the latest and emerging applications with the emphases on antenna integrations for practical applications such as wireless USB, wireless video, phase array, automobile collision avoidance radar, and imaging


On-Wafer Microwave Measurements and De-embedding

On-Wafer Microwave Measurements and De-embedding

Author: Errikos Lourandakis

Publisher: Artech House

Published: 2016-07-31

Total Pages: 251

ISBN-13: 1630813710

DOWNLOAD EBOOK

This new authoritative resource presents the basics of network analyzer measurement equipment and troubleshooting errors involved in the on-wafer microwave measurement process. This book bridges the gap between theoretical and practical information using real-world practices that address all aspects of on-wafer passive device characterization in the microwave frequency range up to 60GHz. Readers find data and measurements from silicon integrated passive devices fabricated and tested in advance CMOS technologies. Basic circuit equations, terms and fundamentals of time and frequency domain analysis are covered. This book also explores the basics of vector network analyzers (VNA), two port S-parameter measurement routines, signal flow graphs, network theory, error models and VNA calibrations with the use of calibration standards.


MM-wave On-wafer Characterization of Electro-optic Devices: a New, Simple Approach

MM-wave On-wafer Characterization of Electro-optic Devices: a New, Simple Approach

Author:

Publisher:

Published: 2000

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A new simple experimental set-up both for on-wafer and in-package electrical and electro-optic characterization of electro-optic devices up to 40 GHz is presented. The technique makes only use of a conventional network vector analyzer (NVA) and of a calibrated high-speed photodetector. The electro-optic transmission coefficient is simply deembedded from the electrical S21 using the detector calibrated responsivity. The RF calibration of the set-up implements the RSOL technique. The results obtained are shown to be comparable with the ones given by commercially available instrumentation, both in terms of accuracy and repeatability. The frequency bandwidth is only determined by the NVA bandwidth provided that the photodetector RF output is well above the NVA noise floor. Firstly some comparison with commercially available instrumentation up to 40 GHz on in-package device will be shown to validate the technique, after that, results concerning both in-package and on-wafer devices up to 40 GHz will be reported.


The VNA Applications Handbook

The VNA Applications Handbook

Author: Gregory Bonaguide

Publisher: Artech House

Published: 2019-09-30

Total Pages: 384

ISBN-13: 1630816027

DOWNLOAD EBOOK

Written by prominent experts in the field, this authoritative new resource provides guidelines for performing a wide variety of Vector Network Analyzers (VNA) measurements. The capabilities and limitations of modern VNA in the context of challenging real-world applications are explained, as well as insights for optimizing test setups and instrument settings, making accurate measurements and, equally important, avoiding costly mistakes. Organized by topic, the readers can focus on chapters covering particular measurement challenges. Application topics include linear and non-linear measurements of passive and active devices, frequency converting devices, and special considerations for high-power, high-gain, and pulsed devices. Signal Integrity and time-domain reflectometry are covered, as well as emerging applications at millimeter-wave frequencies driven by 5G and automotive radar. Waveguide is presented, with emphasis on understanding guided-wave propagation and the associated calculations required for creating calibration standards. Each application is supported by illustrations that help explain key concepts and VNA screenshots are used to show both expected and, in some cases, unexpected results. This book equips engineers and lab technicians to better understand these important instruments, and effectively use them to develop the technologies that drive our world.


Silicon-Germanium Heterojunction Bipolar Transistors for Mm-wave Systems Technology, Modeling and Circuit Applications

Silicon-Germanium Heterojunction Bipolar Transistors for Mm-wave Systems Technology, Modeling and Circuit Applications

Author: Niccolò Rinaldi

Publisher: CRC Press

Published: 2022-09-01

Total Pages: 377

ISBN-13: 1000794407

DOWNLOAD EBOOK

The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer era, to more than 60% of the final cost of a mobile telephone, 50% of the price of a personal computer (representing nearly 100% of the functionalities) and 30% of the price of a monitor in the early 2000’s.Interest in utilizing the (sub-)mm-wave frequency spectrum for commercial and research applications has also been steadily increasing. Such applications, which constitute a diverse but sizeable future market, span a large variety of areas such as health, material science, mass transit, industrial automation, communications, and space exploration.Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems Technology, Modeling and Circuit Applications provides an overview of results of the DOTSEVEN EU research project, and as such focusses on key material developments for mm-Wave Device Technology. It starts with the motivation at the beginning of the project and a summary of its major achievements. The subsequent chapters provide a detailed description of the obtained research results in the various areas of process development, device simulation, compact device modeling, experimental characterization, reliability, (sub-)mm-wave circuit design and systems.


Measurement Techniques for Radio Frequency Nanoelectronics

Measurement Techniques for Radio Frequency Nanoelectronics

Author: T. Mitch Wallis

Publisher: Cambridge University Press

Published: 2017-09-14

Total Pages: 329

ISBN-13: 1108326315

DOWNLOAD EBOOK

Connect basic theory with real-world applications with this practical, cross-disciplinary guide to radio frequency measurement of nanoscale devices and materials. • Learn the techniques needed for characterizing the performance of devices and their constituent building blocks, including semiconducting nanowires, graphene, and other two dimensional materials such as transition metal dichalcogenides • Gain practical insights into instrumentation, including on-wafer measurement platforms and scanning microwave microscopy • Discover how measurement techniques can be applied to solve real-world problems, in areas such as passive and active nanoelectronic devices, semiconductor dopant profiling, subsurface nanoscale tomography, nanoscale magnetic device engineering, and broadband, spatially localized measurements of biological materials Featuring numerous practical examples, and written in a concise yet rigorous style, this is the ideal resource for researchers, practicing engineers, and graduate students new to the field of radio frequency nanoelectronics.