Bayesian Statistics and Marketing

Bayesian Statistics and Marketing

Author: Peter E. Rossi

Publisher: John Wiley & Sons

Published: 2012-05-14

Total Pages: 368

ISBN-13: 0470863684

DOWNLOAD EBOOK

The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new product introduction to pricing, and with a wide variety of different data sources. Bayesian Statistics and Marketing describes the basic advantages of the Bayesian approach, detailing the nature of the computational revolution. Examples contained include household and consumer panel data on product purchases and survey data, demand models based on micro-economic theory and random effect models used to pool data among respondents. The book also discusses the theory and practical use of MCMC methods. Written by the leading experts in the field, this unique book: Presents a unified treatment of Bayesian methods in marketing, with common notation and algorithms for estimating the models. Provides a self-contained introduction to Bayesian methods. Includes case studies drawn from the authors’ recent research to illustrate how Bayesian methods can be extended to apply to many important marketing problems. Is accompanied by an R package, bayesm, which implements all of the models and methods in the book and includes many datasets. In addition the book’s website hosts datasets and R code for the case studies. Bayesian Statistics and Marketing provides a platform for researchers in marketing to analyse their data with state-of-the-art methods and develop new models of consumer behaviour. It provides a unified reference for cutting-edge marketing researchers, as well as an invaluable guide to this growing area for both graduate students and professors, alike.


The Predictive Retailer

The Predictive Retailer

Author: Andrew Pearson

Publisher: Createspace Independent Publishing Platform

Published: 2017-10-23

Total Pages: 404

ISBN-13: 9781979079525

DOWNLOAD EBOOK

The Predictive Retailer is a retail company that utilizes the latest technological developments to deliver an exceptional personalized experience to each and every customer. Today, technology such as AI, Machine Learning, Augmented Reality, IoT, Real-time stream processing, social media, and wearables are altering the Customer Experience (CX) landscape and retailers need to jump aboard this fast moving technology or run the risk of being left out in the cold. The Predictive Retailer reveals how these and other technologies can help shape the customer journey. The book details how the five types of analytics-descriptive, diagnostic, predictive, prescriptive, and edge analytics-affect not only the customer journey, but also just about every operating function of the retailer. An IoT connected retailer can make its operations smart. Connected devices can help with inventory optimization, supply chain management, labor management, waste management, as well as keep the retailer's data centers green and its energy use smart. Social media is no longer a vanity platform, but rather it is a place to both connect with current customers as well as court new ones. It is also a powerful branding channel that can be utilized to both understand a retailer's position in the market, as well as a place to benchmark its position against its competitors. Today, technology moves at break-neck speed and it can offer the potential of anticipatory capabilities, but it also comes with a confusing variety of technological terms--Big Data, Cognitive Computing, CX, Data Lakes, Hadoop, Kafka, Personalization, Spark, etc., etc. The Predictive Retailer will help make sense of it all, so that a retail executive can cut through the confusing technological jargon and understand why a Spark-based real-time stream processing data stream might be preferable to a TIBCO Streambase one, or an IBM Streaming Analytics one. This book will help retail executives break through the technological clutter so that they can deliver an unrivaled customer experience to each and every patron that comes through their doors.


The Nonlinear Workbook

The Nonlinear Workbook

Author: W.-H. Steeb

Publisher: World Scientific

Published: 2008

Total Pages: 625

ISBN-13: 9812818529

DOWNLOAD EBOOK

"The study of nonlinear dynamical systems has advanced tremendously in the last 20 years, making a big impact on science and technology. This book provides all the techniques and methods used in nonlinear dynamics. The concepts and underlying mathematics are discussed in detail." "The text has been designed for a one-year course at both the junior and senior levels in nonlinear dynamics. The topics discussed in the book are part of e-learning and distance learning courses conducted by the International School for Scientific Computing, University of Johannesburg."--BOOK JACKET.


Market Response Models

Market Response Models

Author: Dominique M. Hanssens

Publisher: Springer Science & Business Media

Published: 2005-12-19

Total Pages: 507

ISBN-13: 0306475944

DOWNLOAD EBOOK

From 1976 to the beginning of the millennium—covering the quarter-century life span of this book and its predecessor—something remarkable has happened to market response research: it has become practice. Academics who teach in professional fields, like we do, dream of such things. Imagine the satisfaction of knowing that your work has been incorporated into the decision-making routine of brand managers, that category management relies on techniques you developed, that marketing management believes in something you struggled to establish in their minds. It’s not just us that we are talking about. This pride must be shared by all of the researchers who pioneered the simple concept that the determinants of sales could be found if someone just looked for them. Of course, economists had always studied demand. But the project of extending demand analysis would fall to marketing researchers, now called marketing scientists for good reason, who saw that in reality the marketing mix was more than price; it was advertising, sales force effort, distribution, promotion, and every other decision variable that potentially affected sales. The bibliography of this book supports the notion that the academic research in marketing led the way. The journey was difficult, sometimes halting, but ultimately market response research advanced and then insinuated itself into the fabric of modern management.


Data Science

Data Science

Author: Qurban A Memon

Publisher: CRC Press

Published: 2019-09-26

Total Pages: 345

ISBN-13: 0429554354

DOWNLOAD EBOOK

The aim of this book is to provide an internationally respected collection of scientific research methods, technologies and applications in the area of data science. This book can prove useful to the researchers, professors, research students and practitioners as it reports novel research work on challenging topics in the area surrounding data science. In this book, some of the chapters are written in tutorial style concerning machine learning algorithms, data analysis, information design, infographics, relevant applications, etc. The book is structured as follows: • Part I: Data Science: Theory, Concepts, and Algorithms This part comprises five chapters on data Science theory, concepts, techniques and algorithms. • Part II: Data Design and Analysis This part comprises five chapters on data design and analysis. • Part III: Applications and New Trends in Data Science This part comprises four chapters on applications and new trends in data science.


A Non-Random Walk Down Wall Street

A Non-Random Walk Down Wall Street

Author: Andrew W. Lo

Publisher: Princeton University Press

Published: 2011-11-14

Total Pages: 449

ISBN-13: 1400829097

DOWNLOAD EBOOK

For over half a century, financial experts have regarded the movements of markets as a random walk--unpredictable meanderings akin to a drunkard's unsteady gait--and this hypothesis has become a cornerstone of modern financial economics and many investment strategies. Here Andrew W. Lo and A. Craig MacKinlay put the Random Walk Hypothesis to the test. In this volume, which elegantly integrates their most important articles, Lo and MacKinlay find that markets are not completely random after all, and that predictable components do exist in recent stock and bond returns. Their book provides a state-of-the-art account of the techniques for detecting predictabilities and evaluating their statistical and economic significance, and offers a tantalizing glimpse into the financial technologies of the future. The articles track the exciting course of Lo and MacKinlay's research on the predictability of stock prices from their early work on rejecting random walks in short-horizon returns to their analysis of long-term memory in stock market prices. A particular highlight is their now-famous inquiry into the pitfalls of "data-snooping biases" that have arisen from the widespread use of the same historical databases for discovering anomalies and developing seemingly profitable investment strategies. This book invites scholars to reconsider the Random Walk Hypothesis, and, by carefully documenting the presence of predictable components in the stock market, also directs investment professionals toward superior long-term investment returns through disciplined active investment management.