Ambipolar Materials and Devices

Ambipolar Materials and Devices

Author: Ye Zhou

Publisher: Royal Society of Chemistry

Published: 2020-09-04

Total Pages: 463

ISBN-13: 1788019288

DOWNLOAD EBOOK

Ambipolar materials represent a class of materials where positive and negative charge carriers can both transport concurrently. In recent years, a diverse range of materials have been synthesized and utilized for implementing ambipolar charge transport, with applications in high‐density data storage, field effect transistors, nanotransitors, photonic memory, biomaterial-based memories and artificial synapses. This book highlights recent development of ambipolar materials involving materials design, fundamental principles, interface modifications, device structures, ambipolar characteristics and promising applications. Challenges and prospects for investigating ambipolar materials in electronics and optoelectronics are also discussed. With contributions from global leaders in the field, this title will appeal to graduate students and researchers who want to understand the design, materials characteristics, device operation principles, specialized device application and mechanisms of the latest ambipolar materials.


Charge Transport in Liquid Crystalline Smectic and Discotic Organic Semiconductors

Charge Transport in Liquid Crystalline Smectic and Discotic Organic Semiconductors

Author: Sanjoy Paul

Publisher:

Published: 2016

Total Pages: 205

ISBN-13:

DOWNLOAD EBOOK

Organic electronics offer the possibility of producing low cost, flexible, and large area electronics. Organic semiconductors (OSCs) (organic polymers and crystals), used in organic electronics, are promising materials for novel optical and electronic devices such as organic light emitting diodes, organic field effect transistors, organic sensors, and organic photovoltaics (OPVs). OSCs are composed of molecules weakly held together via van der Walls forces rather than covalent bonds as in the case of inorganic semiconductors such as Si. The combined effect of small wave function overlap, spatial and energetic disorder in organic semiconducting materials lead to localization of charge carriers and, in many cases, hopping conduction. OSCs also differ from conventional semiconductors in that charges photogeneration (e.g., in OPVs) proceeds via the production, diffusion, and dissociation of excitons. Liquid crystalline OSCs (LCOSCs) are semiconductors with phases intermediate between the highly ordered crystalline and completely disordered liquid phases. These materials offer many advantages including facile alignment and the opportunity to study the effects of differing intermolecular geometries on transfer integrals, disorder-induced trapping, charge mobilities, and photogeneration efficiency. In this dissertation work, we explored the photogeneration and charge transport mechanisms in a few model smectic and discotic LCs to better understand the governing principles of photogeneration and charge transport using conventional and novel methods based on the pulsed laser time-of-flight charge carrier transport technique. Four major interrelated topics were considered in this research. First, a sample of smectic LC was aligned in order to compare the resulting hole mobility to that of an unaligned sample, with the aim of understanding how the intermolecular alignment over large length scales affects the hopping probability. The role of the polarization of the photogenerating light was also explored in the context of these anisotropic systems. Next, the photogeneration and charge transport was investigated as a function of temperature, electric field, the wavelength and intensity of photogenerating light. Different exciton dissociation interfaces between the electrode and the LC to probe the details of the mechanism of excitonic dissociation (e.g., surface mediated generation vs. exciton-exciton fusion) were explored. Next, we have also developed a new method of spatially resolving the photogeneration and transport mechanisms in inhomogeneous OSCs called "scanning time of flight microscopy (STOFm)" which simultaneously obtains 2d images of transport coefficients and polarized transmittance. The STOFm was extensively used to study charge transport in various structured semiconductors: smectics, discotics, as well as in phase separated LC/polymer structures. Finally, this work involves characterization and analysis of transport in a number of new phenyl-naphthalene LC OSCs.


Large Area and Flexible Electronics

Large Area and Flexible Electronics

Author: Mario Caironi

Publisher: John Wiley & Sons

Published: 2015-01-13

Total Pages: 588

ISBN-13: 3527679995

DOWNLOAD EBOOK

From materials to applications, this ready reference covers the entire value chain from fundamentals via processing right up to devices, presenting different approaches to large-area electronics, thus enabling readers to compare materials, properties and performance. Divided into two parts, the first focuses on the materials used for the electronic functionality, covering organic and inorganic semiconductors, including vacuum and solution-processed metal-oxide semiconductors, nanomembranes and nanocrystals, as well as conductors and insulators. The second part reviews the devices and applications of large-area electronics, including flexible and ultra-high-resolution displays, light-emitting transistors, organic and inorganic photovoltaics, large-area imagers and sensors, non-volatile memories and radio-frequency identification tags. With its academic and industrial viewpoints, this volume provides in-depth knowledge for experienced researchers while also serving as a first-stop resource for those entering the field.


Electronic Processes in Organic Semiconductors

Electronic Processes in Organic Semiconductors

Author: Anna Köhler

Publisher: John Wiley & Sons

Published: 2015-06-08

Total Pages: 436

ISBN-13: 3527332928

DOWNLOAD EBOOK

The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.


Organic Molecular Crystals

Organic Molecular Crystals

Author: E. Silin̦š

Publisher: American Institute of Physics

Published: 1994

Total Pages: 466

ISBN-13:

DOWNLOAD EBOOK

Market: Specialists, researchers, and students in solid-state physics, materials science, electronics, chemical physics, organic and physical chemistry, and molecular biophysics. This monograph focuses on the interaction processes of excitons and charge carriers with the local environment, including the polarization and localization phenomena and the formation of polaronic quasi- particles. Transport phenomena are discussed and directly correlated with interaction dynamics, which actually determine the time- and temperature-dependent transiton of charge carriers and excitons from a coherent to a diffusive mode of motion.


Introduction to Thin Film Transistors

Introduction to Thin Film Transistors

Author: S.D. Brotherton

Publisher: Springer Science & Business Media

Published: 2013-04-16

Total Pages: 467

ISBN-13: 3319000020

DOWNLOAD EBOOK

Introduction to Thin Film Transistors reviews the operation, application and technology of the main classes of thin film transistor (TFT) of current interest for large area electronics. The TFT materials covered include hydrogenated amorphous silicon (a-Si:H), poly-crystalline silicon (poly-Si), transparent amorphous oxide semiconductors (AOS), and organic semiconductors. The large scale manufacturing of a-Si:H TFTs forms the basis of the active matrix flat panel display industry. Poly-Si TFTs facilitate the integration of electronic circuits into portable active matrix liquid crystal displays, and are increasingly used in active matrix organic light emitting diode (AMOLED) displays for smart phones. The recently developed AOS TFTs are seen as an alternative option to poly-Si and a-Si:H for AMOLED TV and large AMLCD TV applications, respectively. The organic TFTs are regarded as a cost effective route into flexible electronics. As well as treating the highly divergent preparation and properties of these materials, the physics of the devices fabricated from them is also covered, with emphasis on performance features such as carrier mobility limitations, leakage currents and instability mechanisms. The thin film transistors implemented with these materials are the conventional, insulated gate field effect transistors, and a further chapter describes a new thin film transistor structure: the source gated transistor, SGT. The driving force behind much of the development of TFTs has been their application to AMLCDs, and there is a chapter dealing with the operation of these displays, as well as of AMOLED and electrophoretic displays. A discussion of TFT and pixel layout issues is also included. For students and new-comers to the field, introductory chapters deal with basic semiconductor surface physics, and with classical MOSFET operation. These topics are handled analytically, so that the underlying device physics is clearly revealed. These treatments are then used as a reference point, from which the impact of additional band-gap states on TFT behaviour can be readily appreciated. This reference book, covering all the major TFT technologies, will be of interest to a wide range of scientists and engineers in the large area electronics industry. It will also be a broad introduction for research students and other scientists entering the field, as well as providing an accessible and comprehensive overview for undergraduate and postgraduate teaching programmes.


Organic Field-Effect Transistors

Organic Field-Effect Transistors

Author: Zhenan Bao

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 578

ISBN-13: 1351837575

DOWNLOAD EBOOK

The remarkable development of organic thin film transistors (OTFTs) has led to their emerging use in active matrix flat-panel displays, radio frequency identification cards, and sensors. Exploring one class of OTFTs, Organic Field-Effect Transistors provides a comprehensive, multidisciplinary survey of the present theory, charge transport studies, synthetic methodology, materials characterization, and current applications of organic field-effect transistors (OFETs). Covering various aspects of OFETs, the book begins with a theoretical description of charge transport in organic semiconductors at the molecular level. It then discusses the current understanding of charge transport in single-crystal devices, small molecules and oligomers, conjugated polymer devices, and charge injection issues in organic transistors. After describing the design rationales and synthetic methodologies used for organic semiconductors and dielectric materials, the book provides an overview of a variety of characterization techniques used to probe interfacial ordering, microstructure, molecular packing, and orientation crucial to device performance. It also describes the different processing techniques for molecules deposited by vacuum and solution, followed by current technological examples that employ OTFTs in their operation. Featuring respected contributors from around the world, this thorough, up-to-date volume presents both the theory behind OFETs and the latest applications of this promising technology.


Iontronics

Iontronics

Author: Janelle Leger

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 238

ISBN-13: 1439806896

DOWNLOAD EBOOK

With contributions from a community of experts, the book focuses on the use of ionic functions to define the principle of operation in polymer devices. It begins by reviewing the scientific understanding and important scientific discoveries made on the electrochemistry of conjugated polymers. It examines the known effects of ion incorporation, including the theory and modulation of electrochemistry in polymer films, and it explores the coupling of electronic and ionic transport in polymer films.