The Student Solutions Manual is available as part of the Student Study Pack. It contains worked-out solutions to odd-numbered exercises from each section exercise set, Practice Problems, Mental Math exercises, and all exercises found in the Chapter Review and Chapter Tests.
Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.
For many years, Protective Relaying: Principles and Applications has been the go-to text for gaining proficiency in the technological fundamentals of power system protection. Continuing in the bestselling tradition of the previous editions by the late J. Lewis Blackburn, the Fourth Edition retains the core concepts at the heart of power system anal
Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately, there's Schaum's. This all-in-one-package includes more than 1,100 fully solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 30 detailed videos featuring Math instructors who explain how to solve the most commonly tested problems--it's just like having your own virtual tutor! You’ll find everything you need to build confidence, skills, and knowledge for the highest score possible. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you 1,105 fully solved problems Concise explanations of all calculus concepts Expert tips on using the graphing calculator Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!
This accessible text is designed to help readers help themselves to excel. The content is organized into three parts: (1) A Library of Elementary Functions (Chapters 1–2), (2) Finite Mathematics (Chapters 3–9), and (3) Calculus (Chapters 10–15). The book's overall approach, refined by the authors' experience with large sections of college freshmen, addresses the challenges of learning when readers' prerequisite knowledge varies greatly. Reader-friendly features such as Matched Problems, Explore & Discuss questions, and Conceptual Insights, together with the motivating and ample applications, make this text a popular choice for today's students and instructors.
This clear, accessible treatment of mathematics features a building-block approach toward problem solving, realistic and diverse applications, and chapter organizer to help users focus their study and become effective and confident problem solvers. The Putting Your Skills to Work and new chapter-end feature, Math in the Media, present readers with opportunities to utilize critical thinking skills, analyze and interpret data, and problem solve using applied situations encountered in daily life. Chapter 7, Geometry, has been extensively revised and re-organized to include a new section 7.1 on angles and new section 7.4 devoted to triangles. Increased coverage of estimating with fractions and decimals with new To Think About exercises in Sections 2.5, 2.8, and 3.3 and a new lesson in Section 3.7. Coverage of fractions in Chapter 2 has been expanded as follows: Section 2.6 now begins with a discussion of least common multiples so that the subsequent coverage of least common denominators is more complete; a new lesson on order of operations in Section 2.8 offers readers additional review of these rules and practice applying them to fractions; and a new mid-chapter test on fractions appears after Section 2.5. Percent applications are now covered in two sections (Sections 5.4 and 5.5) to allow for a more patient presentation of this important topic.
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.