Student’s Guide to Calculus by J. Marsden and A. Weinstein

Student’s Guide to Calculus by J. Marsden and A. Weinstein

Author: Frederick H. Soon

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 318

ISBN-13: 146125146X

DOWNLOAD EBOOK

This Student Guide is exceptional, maybe even unique, among such guides in that its author, Fred Soon, was actually a student user of the textbook during one of the years we were writing and debugging the book. (He was one of the best students that year, by the way. ) Because of his background, Fred has taken, in the Guide, the point of view of an experienced student tutor helping you to learn calculus. While we do not always think Fred's jokes are as funny as he does, we appreciate his enthusiasm and his desire to enter into communication with his readers; since we nearly always agree with the mathe matical judgements he has made in explaining the material, we believe that this Guide can serve you as a valuable supplement to our text. To get maximum benefit from this Guide, you should begin by spending a few moments to acquaint yourself with its structure. Once you get started in the course, take advantage of the many opportunities which the text and Student Guide together provide for learning calculus in the only way that any mathe matical subject can truly be mastered - through attempting to solve problems on your own. As you read the text, try doing each example and exercise your self before reading the solution; do the same vith the quiz problems provided by Fred.


Student’s Guide to Calculus by J. Marsden and A. Weinstein

Student’s Guide to Calculus by J. Marsden and A. Weinstein

Author: Frederick H. Soon

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 302

ISBN-13: 1461249708

DOWNLOAD EBOOK

This Student Guide is exceptional, maybe even unique, among such guides in that its author, Fred Soon, was actually a student user of the textbook during one of the years we were writing and debugging the book. (He was one of the best students that year, by the way. ) Because of his background, Fred has taken, in the Guide, the point of view of an experienced student tutor helping you to learn calculus. \~ile we do not always think Fred's jokes are as funny as he does, we appreciate his enthusiasm and his desire to enter into communication with his readers; since we nearly always agree with the mathe matical judgements he has made in explaining the material, we believe that this Guide can serve you as a valuable supplement to our text. To get maximum benefit from this Guide, you should begin by spending a few moments to acquaint yourself with its structure. Once you get started in the course, take advantage of the many opportunities which the text and Student Guide together provide for learning calculus in the only way that any mathe matical subject can truly be mastered - through attempting to solve problems on your own. As you read the text, try doing each example and exercise your self before reading the solution; do the same with the quiz problems provided by Fred.


Calculus Combo

Calculus Combo

Author: Laura Taalman

Publisher: Macmillan Higher Education

Published: 2013-01-11

Total Pages: 1277

ISBN-13: 1464153035

DOWNLOAD EBOOK


Calculus I

Calculus I

Author: Jerrold Marsden

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 412

ISBN-13: 1461250242

DOWNLOAD EBOOK

The goal of this text is to help students learn to use calculus intelligently for solving a wide variety of mathematical and physical problems. This book is an outgrowth of our teaching of calculus at Berkeley, and the present edition incorporates many improvements based on our use of the first edition. We list below some of the key features of the book. Examples and Exercises The exercise sets have been carefully constructed to be of maximum use to the students. With few exceptions we adhere to the following policies. • The section exercises are graded into three consecutive groups: (a) The first exercises are routine, modelled almost exactly on the exam ples; these are intended to give students confidence. (b) Next come exercises that are still based directly on the examples and text but which may have variations of wording or which combine different ideas; these are intended to train students to think for themselves. (c) The last exercises in each set are difficult. These are marked with a star (*) and some will challenge even the best students. Difficult does not necessarily mean theoretical; often a starred problem is an interesting application that requires insight into what calculus is really about. • The exercises come in groups of two and often four similar ones.


Student’s Guide to Calculus by J. Marsden and A. Weinstein

Student’s Guide to Calculus by J. Marsden and A. Weinstein

Author: Frederick H. Soon

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 290

ISBN-13: 1461251508

DOWNLOAD EBOOK

This Student Guide is exceptional, maybe even unique, among such guides in that its author, Fred Soon, was actually a student user of the textbook during one of the years we were writing and debugging the book. (He was one of the best students that year, by the way. ) Because of his background, Fred has taken, in the Guide, the point of view of an experienced student tutor helping you to learn calculus. \~ile we do not always think Fred's jokes are as funny as he does, we appreciate his enthusiasm and his desire to enter into communication with his readers; since we nearly always agree with the mathe matical judgements he has made in explaining the material, we believe that this Guide can serve you as a valuable supplement to our text. To get maximum benefit from this Guide, you should begin by spending a few moments to acquaint yourself with its structure. Once you get started in the course, take advantage of the many opportunities which the text and Student Guide together provide for learning calculus in the only way that any mathe matical subject can truly be mastered - through attempting to solve problems on your own. As you read the text, try doing each example and exercise your self before reading the solution; do the same with the quiz problems provided by Fred.


Modeling Life

Modeling Life

Author: Alan Garfinkel

Publisher: Springer

Published: 2017-09-06

Total Pages: 456

ISBN-13: 3319597310

DOWNLOAD EBOOK

This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?


Geometric Models for Noncommutative Algebras

Geometric Models for Noncommutative Algebras

Author: Ana Cannas da Silva

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 202

ISBN-13: 9780821809525

DOWNLOAD EBOOK

The volume is based on a course, ``Geometric Models for Noncommutative Algebras'' taught by Professor Weinstein at Berkeley. Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, for example, the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this work, the authors discuss several types of geometric objects (in the usual sense of sets with structure) that are closely related to noncommutative algebras. Central to the discussion are symplectic and Poisson manifolds, which arise when noncommutative algebras are obtained by deforming commutative algebras. The authors also give a detailed study of groupoids (whose role in noncommutative geometry has been stressed by Connes) as well as of Lie algebroids, the infinitesimal approximations to differentiable groupoids. Featured are many interesting examples, applications, and exercises. The book starts with basic definitions and builds to (still) open questions. It is suitable for use as a graduate text. An extensive bibliography and index are included.


Real Mathematical Analysis

Real Mathematical Analysis

Author: Charles Chapman Pugh

Publisher: Springer Science & Business Media

Published: 2013-03-19

Total Pages: 445

ISBN-13: 0387216847

DOWNLOAD EBOOK

Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.