Understanding Analysis

Understanding Analysis

Author: Stephen Abbott

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 269

ISBN-13: 0387215069

DOWNLOAD EBOOK

This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.


Book of Proof

Book of Proof

Author: Richard H. Hammack

Publisher:

Published: 2016-01-01

Total Pages: 314

ISBN-13: 9780989472111

DOWNLOAD EBOOK

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.


Student Solutions Manual for Basic College Mathematics with Early Integers

Student Solutions Manual for Basic College Mathematics with Early Integers

Author: Elayn Martin-Gay

Publisher:

Published: 2015-10-14

Total Pages: 364

ISBN-13: 9780133864816

DOWNLOAD EBOOK

The Student Solutions Manual is available as part of the Student Study Pack. It contains worked-out solutions to odd-numbered exercises from each section exercise set, Practice Problems, Mental Math exercises, and all exercises found in the Chapter Review and Chapter Tests.


A Programmer's Introduction to Mathematics

A Programmer's Introduction to Mathematics

Author: Jeremy Kun

Publisher:

Published: 2020-05-17

Total Pages: 400

ISBN-13:

DOWNLOAD EBOOK

A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.


Invitation to Discrete Mathematics

Invitation to Discrete Mathematics

Author: Jiří Matoušek

Publisher: Oxford University Press

Published: 2009

Total Pages: 462

ISBN-13: 0198570430

DOWNLOAD EBOOK

A clear and self-contained introduction to discrete mathematics for undergraduates and early graduates.


How to Prove It

How to Prove It

Author: Daniel J. Velleman

Publisher: Cambridge University Press

Published: 2006-01-16

Total Pages: 401

ISBN-13: 0521861241

DOWNLOAD EBOOK

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.


College Algebra

College Algebra

Author: Jay Abramson

Publisher:

Published: 2018-01-07

Total Pages: 892

ISBN-13: 9789888407439

DOWNLOAD EBOOK

College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory


Davis's Basic Math Review for Nurses

Davis's Basic Math Review for Nurses

Author: Vicki Raines

Publisher: F.A. Davis

Published: 2009-12-24

Total Pages: 361

ISBN-13: 0803624859

DOWNLOAD EBOOK

A path to conquering the math skills essential for nursing success...and reducing the anxieties math often induces! Step by step, skill by skill...students progress from simple to complex calculations, building their proficiencies and testing it along the way. It’s perfect for course review and quick reference.


A Book of Abstract Algebra

A Book of Abstract Algebra

Author: Charles C Pinter

Publisher: Courier Corporation

Published: 2010-01-14

Total Pages: 402

ISBN-13: 0486474178

DOWNLOAD EBOOK

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.