Rubber elasticity is an important sub-field of polymer science. This book is in many ways a sequel to the authors' previous, more introductory book, Rubberlike Elasticity: A Molecular Primer (Wiley-Interscience, 1988), and will in some respects replace the now classic book by L.R.G. Treloar, The Physics of Rubber Elasticity (Oxford, 1975). The present book has much in common with its predecessor, in particular its strong emphasis on molecular concepts and theories. Similarly, only equilibrium properties are covered in any detail. Though this book treats much of the same subject matter, it is a more comprehensive, more up-to-date, and somewhat more sophisticated treatment.
The book provides comprehensive, up-to-date information on the physical properties of polymers including, viscoelasticity, flammability, miscibility, optical properties, surface properties and more. Containing carefully selected reprints from the Wiley's renowned Encyclopedia of Polymer Science and Technology, this reference features the same breadth and quality of coverage and clarity of presentation found in the original.
Elastomers and rubberlike materials form a critical component in diverse applications that range from tyres to biomimetics and are used in chemical, biomedical, mechanical and electrical engineering. This updated and expanded edition provides an elementary introduction to the physical and molecular concepts governing elastic behaviour, with a particular focus on elastomers. The coverage of fundamental principles has been greatly extended and fully revised, with analogies to more familiar systems such as gases, producing an engaging approach to these phenomena. Dedicated chapters on novel uses of elastomers, covering bioelastomers, filled elastomers and liquid crystalline elastomers, illustrate the established and emerging applications at the forefront of physical science. With a list of experiments and demonstrations, problem sets and solutions, this is a self-contained introduction to the topic for graduate students, researchers and industrialists working in the applied fields of physics and chemistry, polymer science and engineering.
Ideal for entry-level and experienced researchers working in materials science and engineering, this unique book introduces a new subfield of materials science and mechanics of materials: network materials. A comprehensive review of their mechanical behaviours allows readers to understand, design, and enhance the performance of these material systems, across a range of materials including cytoskeletons, connective tissue, and thermoset polymers. By introducing simple models, supported by experimental data, the book provides the necessary fundamental knowledge to assist readers to design and develop their own material systems. By presenting each of these previously disparate material systems within a unified theoretical framework, this book provides a consolidated presentation of the mechanics of networks and their interactions, introducing parameters that define the stochastic structure of the network, and discussing their mechanical behaviour. It is an ideal text for those new to this fast-growing field, and for experienced researchers looking to consolidate their knowledge.
This work gives for the first time an interdisciplinary and deep approach to the mathematical modelling of rubber-like materials considering both the molecular and phenomenological point of views. It contains an introduction to the suitable numerical techniques and an overview of experimental techniques and data with a short survey on some industrial applications. Elastic and inelastic effects are discussed in details. The book is suitable for applied mathematicians, mechanical engineers, civil engineers, material scientists and polymer scientists.
An Updated Edition of the Classic Text Polymers constitute the basis for the plastics, rubber, adhesives, fiber, and coating industries. The Fourth Edition of Introduction to Physical Polymer Science acknowledges the industrial success of polymers and the advancements made in the field while continuing to deliver the comprehensive introduction to polymer science that made its predecessors classic texts. The Fourth Edition continues its coverage of amorphous and crystalline materials, glass transitions, rubber elasticity, and mechanical behavior, and offers updated discussions of polymer blends, composites, and interfaces, as well as such basics as molecular weight determination. Thus, interrelationships among molecular structure, morphology, and mechanical behavior of polymers continue to provide much of the value of the book. Newly introduced topics include: Nanocomposites, including carbon nanotubes and exfoliated montmorillonite clays The structure, motions, and functions of DNA and proteins, as well as the interfaces of polymeric biomaterials with living organisms The glass transition behavior of nano-thin plastic films In addition, new sections have been included on fire retardancy, friction and wear, optical tweezers, and more. Introduction to Physical Polymer Science, Fourth Edition provides both an essential introduction to the field as well as an entry point to the latest research and developments in polymer science and engineering, making it an indispensable text for chemistry, chemical engineering, materials science and engineering, and polymer science and engineering students and professionals.
A practical reference for all plastics engineers who are seeking to answer a question, solve a problem, reduce a cost, improve a design or fabrication process, or even venture into a new market. Applied Plastics Engineering Handbook covers both polymer basics – helpful to bring readers quickly up to speed if they are not familiar with a particular area of plastics processing – and recent developments – enabling practitioners to discover which options best fit their requirements. Each chapter is an authoritative source of practical advice for engineers, providing authoritative guidance from experts that will lead to cost savings and process improvements. Throughout the book, the focus is on the engineering aspects of producing and using plastics. The properties of plastics are explained along with techniques for testing, measuring, enhancing and analyzing them. - Practical introductions to both core topics and new developments make this work equally valuable for newly qualified plastics engineers seeking the practical rules-of-thumb they don't teach you in school, and experienced practitioners evaluating new technologies or getting up to speed on a new field - The depth and detail of the coverage of new developments enables engineers and managers to gain knowledge of, and evaluate, new technologies and materials in key growth areas such as biomaterials and nanotechnology - This highly practical handbook is set apart from other references in the field, being written by engineers for an audience of engineers and providing a wealth of real-world examples, best practice guidance and rules-of-thumb
Maintaining a balance between depth and breadth, the Sixth Edition of Principles of Polymer Systems continues to present an integrated approach to polymer science and engineering. A classic text in the field, the new edition offers a comprehensive exploration of polymers at a level geared toward upper-level undergraduates and beginning graduate students. Revisions to the sixth edition include: A more detailed discussion of crystallization kinetics, strain-induced crystallization, block copolymers, liquid crystal polymers, and gels New, powerful radical polymerization methods Additional polymerization process flow sheets and discussion of the polymerization of polystyrene and poly(vinyl chloride) New discussions on the elongational viscosity of polymers and coarse-grained bead-spring molecular and tube models Updated information on models and experimental results of rubber elasticity Expanded sections on fracture of glassy and semicrystalline polymers New sections on fracture of elastomers, diffusion in polymers, and membrane formation New coverage of polymers from renewable resources New section on X-ray methods and dielectric relaxation All chapters have been updated and out-of-date material removed. The text contains more theoretical background for some of the fundamental concepts pertaining to polymer structure and behavior, while also providing an up-to-date discussion of the latest developments in polymerization systems. Example problems in the text help students through step-by-step solutions and nearly 300 end-of-chapter problems, many new to this edition, reinforce the concepts presented.
Written by expert contributors from the academic and industrial sectors, this book presents traditional and modern approaches to polymer characterization and analysis. The emphasis is on pragmatics, problem solving and property determination; real-world applications provide a context for key concepts. The characterizations focus on organic polymer and polymer product microstructure and composition. - Approaches molecular characterization and analysis of polymers from the viewpoint of problem-solving and polymer property characterization, rather than from a technique championing approach - Focuses on providing a means to ascertaining the optimum approach or technique(s) to solve a problem/measure a property, and thereby develop an analytical competence in the molecular characterization and analysis of real-world polymer products - Provides background on polymer chemistry and microstructure, discussions of polymer chain, morphology, degradation, and product failure and additive analysis, and considers the supporting roles of modeling and high-throughput analysis