The papers presented here describe research to improve the general understanding of the application of SAMR to practical problems, to identify issues critical to efficient and effective implementation on high performance computers and to stimulate the development of a community code repository for software including benchmarks to assist in the evaluation of software and compiler technologies. The ten chapters have been divided into two parts reflecting two major issues in the topic: programming complexity of SAMR algorithms and the applicability and numerical challenges of SAMR methods.
The papers presented here describe research to improve the general understanding of the application of SAMR to practical problems, to identify issues critical to efficient and effective implementation on high performance computers, and to stimulate the development of a community code repository for software including benchmarks to assist in the evaluation of software and compiler technologies. The ten chapters have been divided into two parts: programming complexity of SAMR algorithms and the applicability and numerical challenges of SAMR methods.
A unique investigation of the state of the art in design, architectures, and implementations of advanced computational infrastructures and the applications they support Emerging large-scale adaptive scientific and engineering applications are requiring an increasing amount of computing and storage resources to provide new insights into complex systems. Due to their runtime adaptivity, these applications exhibit complicated behaviors that are highly dynamic, heterogeneous, and unpredictable—and therefore require full-fledged computational infrastructure support for problem solving, runtime management, and dynamic partitioning/balancing. This book presents a comprehensive study of the design, architecture, and implementation of advanced computational infrastructures as well as the adaptive applications developed and deployed using these infrastructures from different perspectives, including system architects, software engineers, computational scientists, and application scientists. Providing insights into recent research efforts and projects, the authors include descriptions and experiences pertaining to the realistic modeling of adaptive applications on parallel and distributed systems. The first part of the book focuses on high-performance adaptive scientific applications and includes chapters that describe high-impact, real-world application scenarios in order to motivate the need for advanced computational engines as well as to outline their requirements. The second part identifies popular and widely used adaptive computational infrastructures. The third part focuses on the more specific partitioning and runtime management schemes underlying these computational toolkits. Presents representative problem-solving environments and infrastructures, runtime management strategies, partitioning and decomposition methods, and adaptive and dynamic applications Provides a unique collection of selected solutions and infrastructures that have significant impact with sufficient introductory materials Includes descriptions and experiences pertaining to the realistic modeling of adaptive applications on parallel and distributed systems The cross-disciplinary approach of this reference delivers a comprehensive discussion of the requirements, design challenges, underlying design philosophies, architectures, and implementation/deployment details of advanced computational infrastructures. It makes it a valuable resource for advanced courses in computational science and software/systems engineering for senior undergraduate and graduate students, as well as for computational and computer scientists, software developers, and other industry professionals.
Euro-Par Conference Series Euro-Par is an annual series of international conferences dedicated to the p- motion and advancement of all aspectsof parallelcomputing. The major themes can be divided into the broad categories of hardware, software, algorithms and applications for parallel computing. The objective of Euro-Par is to provide a forum within which to promote the development of parallel computing both as an industrial technique and an academic discipline, extending the frontier of both the state of the art and the state of the practice. This is particularly - portant at a time when parallel computing is undergoing strong and sustained development and experiencing real industrial take-up. The main audience for, and participants at, Euro-Par are seen as researchers in academic departments, government laboratories and industrial organizations. Euro-Par’s objective is to be the primary choice of such professionals for the presentation of new - sults in their speci?c areas. Euro-Par also targets applications demonstrating the e?ectiveness of parallelism. This year’s Euro-Par conference was the tenth in the conference series. The previous Euro-Par conferences took place in Sto- holm, Lyon, Passau, Southampton, Toulouse, Munich, Manchester, Paderborn and Klagenfurt. Next year the conference will take place in Lisbon. Euro-Par has a permanent Web site hosting the aims, the organization structure details as well as all the conference history:http://www. europar. org.
This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. Graduate students, researchers and practitioners working in this area will benefit from this book.
This book constitutes the thoroughly refereed post-workshop proceedings of the First and the Second International Workshop on OpenMP, IWOMP 2005 and IWOMP 2006, held in Eugene, OR, USA, and in Reims, France, in June 2005 and 2006 respectively. The first part of the book presents 16 revised full papers carefully reviewed and selected from the IWOMP 2005 program and organized in topical sections on performance tools, compiler technology, run-time environment, applications, as well as the OpenMP language and its evaluation. In the second part there are 19 papers of IWOMP 2006, fully revised and grouped thematically in sections on advanced performance tuning aspects of code development applications, and proposed extensions to OpenMP.
Euro-Par – the European Conference on Parallel Computing – is an international conference series dedicated to the promotion and advancement of all aspects of parallel computing. The major themes can be divided into the broad categories of hardware, software, algorithms, and applications for parallel computing. The objective of Euro-Par is to provide a forum within which to promote the dev- opment of parallel computing both as an industrial technique and an academic discipline, extending the frontiers of both the state of the art and the state of the practice. This is particularlyimportant at a time when parallel computing is undergoing strong and sustained development and experiencing real ind- trial take up. The main audience for and participants in Euro-Par are seen as researchers in academic departments, government laboratories, and industrial organisations. Euro-Par aims to become the primarychoice of such professionals for the presentation of new results in their speci?c areas. Euro-Par is also int- ested in applications that demonstrate the e?ectiveness of the main Euro-Par themes. Euro-Par has its own Internet domain with a permanent web site where the historyof the conference series is described: http://www. euro-par. org. The Euro-Par conference series is sponsored bythe Association of Computer Machineryand the International Federation of Information Processing. Euro-Par 2001 Euro-Par 2001 was organised bythe Universityof Manchester and UMIST.
Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines summarizes recent developments in Artificial Intelligence (AI)/Machine Learning (ML) and data driven optimization and calibration techniques for internal combustion engines. The book covers AI/ML and data driven methods to optimize fuel formulations and engine combustion systems, predict cycle to cycle variations, and optimize after-treatment systems and experimental engine calibration. It contains all the details of the latest optimization techniques along with their application to ICE, making it ideal for automotive engineers, mechanical engineers, OEMs and R&D centers involved in engine design. - Provides AI/ML and data driven optimization techniques in combination with Computational Fluid Dynamics (CFD) to optimize engine combustion systems - Features a comprehensive overview of how AI/ML techniques are used in conjunction with simulations and experiments - Discusses data driven optimization techniques for fuel formulations and vehicle control calibration
The book reviews methods for the analysis of astronomical datasets, particularly emphasizing very large databases arising from both existing and forthcoming projects, as well as current large-scale computer simulation studies. Leading experts give overviews of cutting-edge methods applicable in the area of astronomical data mining.
The book provides a broad overview of the full spectrum of state-of-the-art computational activities in multiphase flow as presented by top practitioners in the field. It starts with well-established approaches and builds up to newer methods. These methods are illustrated with applications to a broad spectrum of problems involving particle dispersion and deposition, turbulence modulation, environmental flows, fluidized beds, bubbly flows, and many others.