Structure and Representations of Jordan Algebras

Structure and Representations of Jordan Algebras

Author: Nathan Jacobson

Publisher: American Mathematical Soc.

Published: 1968-12-31

Total Pages: 464

ISBN-13: 082184640X

DOWNLOAD EBOOK

The theory of Jordan algebras has played important roles behind the scenes of several areas of mathematics. Jacobson's book has long been the definitive treatment of the subject. It covers foundational material, structure theory, and representation theory for Jordan algebras. Of course, there are immediate connections with Lie algebras, which Jacobson details in Chapter 8. Of particular continuing interest is the discussion of exceptional Jordan algebras, which serve to explain the exceptional Lie algebras and Lie groups. Jordan algebras originally arose in the attempts by Jordan, von Neumann, and Wigner to formulate the foundations of quantum mechanics. They are still useful and important in modern mathematical physics, as well as in Lie theory, geometry, and certain areas of analysis.


A Taste of Jordan Algebras

A Taste of Jordan Algebras

Author: Kevin McCrimmon

Publisher: Springer Science & Business Media

Published: 2006-05-29

Total Pages: 584

ISBN-13: 0387217967

DOWNLOAD EBOOK

This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.


Jordan Algebras and Algebraic Groups

Jordan Algebras and Algebraic Groups

Author: Tonny A. Springer

Publisher: Springer Science & Business Media

Published: 1997-12-11

Total Pages: 202

ISBN-13: 9783540636328

DOWNLOAD EBOOK

From the reviews: "This book presents an important and novel approach to Jordan algebras. [...] Springer's work will be of service to research workers familiar with linear algebraic groups who find they need to know something about Jordan algebras and will provide Jordan algebraists with new techniques and a new approach to finite-dimensional algebras over fields." American Scientist


Jordan Structures in Lie Algebras

Jordan Structures in Lie Algebras

Author: Antonio Fernández López

Publisher:

Published: 2019

Total Pages: 314

ISBN-13: 9781470453626

DOWNLOAD EBOOK

This book explores applications of Jordan theory to the theory of Lie algebras. It begins with the general theory of nonassociative algebras and of Lie algebras and then focuses on properties of Jordan elements of special types. Then it proceeds to the core of the book, in which the author explains how properties of the Jordan algebra attached to a Jordan element of a Lie algebra can be used to reveal properties of the Lie algebra itself. One of the special features of this book is that it carefully explains Zelmanov's seminal results on infinite-dimensional Lie algebras from this point of vie.


Octonions, Jordan Algebras and Exceptional Groups

Octonions, Jordan Algebras and Exceptional Groups

Author: Tonny A. Springer

Publisher: Springer

Published: 2013-12-21

Total Pages: 212

ISBN-13: 3662126222

DOWNLOAD EBOOK

The 1963 Göttingen notes of T. A. Springer are well known in the field but have been unavailable for some time. This book is a translation of those notes, completely updated and revised. The part of the book dealing with the algebraic structures is on a fairly elementary level, presupposing basic results from algebra.


Introduction to Lie Algebras and Representation Theory

Introduction to Lie Algebras and Representation Theory

Author: J.E. Humphreys

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 189

ISBN-13: 1461263980

DOWNLOAD EBOOK

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.


Algebras and Representation Theory

Algebras and Representation Theory

Author: Karin Erdmann

Publisher: Springer

Published: 2018-09-07

Total Pages: 304

ISBN-13: 3319919989

DOWNLOAD EBOOK

This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.


Finite-Dimensional Division Algebras over Fields

Finite-Dimensional Division Algebras over Fields

Author: Nathan Jacobson

Publisher: Springer Science & Business Media

Published: 2009-12-09

Total Pages: 290

ISBN-13: 3642024297

DOWNLOAD EBOOK

Here, the eminent algebraist, Nathan Jacobsen, concentrates on those algebras that have an involution. Although they appear in many contexts, these algebras first arose in the study of the so-called "multiplication algebras of Riemann matrices". Of particular interest are the Jordan algebras determined by such algebras, and thus their structure is discussed in detail. Two important concepts also dealt with are the universal enveloping algebras and the reduced norm. However, the largest part of the book is the fifth chapter, which focuses on involutorial simple algebras of finite dimension over a field.


Structure of Algebras

Structure of Algebras

Author: Abraham Adrian Albert

Publisher: American Mathematical Soc.

Published: 1939-12-31

Total Pages: 224

ISBN-13: 0821810243

DOWNLOAD EBOOK

The first three chapters of this work contain an exposition of the Wedderburn structure theorems. Chapter IV contains the theory of the commutator subalgebra of a simple subalgebra of a normal simple algebra, the study of automorphisms of a simple algebra, splitting fields, and the index reduction factor theory. The fifth chapter contains the foundation of the theory of crossed products and of their special case, cyclic algebras. The theory of exponents is derived there as well as the consequent factorization of normal division algebras into direct factors of prime-power degree. Chapter VI consists of the study of the abelian group of cyclic systems which is applied in Chapter VII to yield the theory of the structure of direct products of cyclic algebras and the consequent properties of norms in cyclic fields. This chapter is closed with the theory of $p$-algebras. In Chapter VIII an exposition is given of the theory of the representations of algebras. The treatment is somewhat novel in that while the recent expositions have used representation theorems to obtain a number of results on algebras, here the theorems on algebras are themselves used in the derivation of results on representations. The presentation has its inspiration in the author's work on the theory of Riemann matrices and is concluded by the introduction to the generalization (by H. Weyl and the author) of that theory. The theory of involutorial simple algebras is derived in Chapter X both for algebras over general fields and over the rational field. The results are also applied in the determination of the structure of the multiplication algebras of all generalized Riemann matrices, a result which is seen in Chapter XI to imply a complete solution of the principal problem on Riemann matrices.