Structure-Related Intrinsic Electrical States and Firing Patterns of Neurons With Active Dendrites

Structure-Related Intrinsic Electrical States and Firing Patterns of Neurons With Active Dendrites

Author: Sergey M. Korogod

Publisher: Frontiers Media SA

Published: 2018-10-18

Total Pages: 296

ISBN-13: 2889456080

DOWNLOAD EBOOK

Activity of the multi-functional networked neurons depends on their intrinsic states and bears both cell- and network-defined features. Firing patterns of a neuron are conventionally attributed to spatial-temporal organization of inputs received from the network-mates via synapses, in vast majority dendritic. This attribution reflects widespread views of the within-cell job sharing, such that the main function of the dendrites is to receive signals and deliver them to the axo-somatic trigger zone, which actually generates the output pattern. However, these views are now revisited due to finding of active, non-linear properties of the dendritic membrane practically in neurons of practically all explored types. Like soma and axon, the dendrites with active membrane are able to generate self-maintained, propagating depolarizations and thus share intrinsic pattern-forming role with the trigger zone. Unlike the trigger zone, the dendrites have complex geometry, which is subject to developmental, activity-dependent, or neurodegenerative changes. Structural features of the arborization inevitably impact on electrical states and cooperative behavior of its constituting parts at different levels of organization, from sub-trees and branches to voltage- and ligand-gated ion channels populating the dendritic membrane. More than two decades of experimental and computer simulation studies have brought numerous phenomenological demonstrations of influence of the dendritic structure on neuronal firing patterns. A necessary step forward is to comprehend these findings and build a firm theoretical basis, including quantitative relationships between geometrical and electrical characteristics determining intrinsic activity of neurons. The articles in this eBook represent progress achieved in a broad circle of laboratories studied various aspects of structure and function of the neuronal dendrites. The authors elucidate new details of dendritic mechanisms underlying intrinsic activity patterns in neurons and highlight important questions that remain open in this important domain of cellular and computational neuroscience.


Structure-Related Intrinsic Electrical States and Firing Patterns of Neurons With Active Dendrites

Structure-Related Intrinsic Electrical States and Firing Patterns of Neurons With Active Dendrites

Author:

Publisher:

Published: 2018

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Activity of the multi-functional networked neurons depends on their intrinsic states and bears both cell- and network-defined features. Firing patterns of a neuron are conventionally attributed to spatial-temporal organization of inputs received from the network-mates via synapses, in vast majority dendritic. This attribution reflects widespread views of the within-cell job sharing, such that the main function of the dendrites is to receive signals and deliver them to the axo-somatic trigger zone, which actually generates the output pattern. However, these views are now revisited due to finding of active, non-linear properties of the dendritic membrane practically in neurons of practically all explored types. Like soma and axon, the dendrites with active membrane are able to generate self-maintained, propagating depolarizations and thus share intrinsic pattern-forming role with the trigger zone. Unlike the trigger zone, the dendrites have complex geometry, which is subject to developmental, activity-dependent, or neurodegenerative changes. Structural features of the arborization inevitably impact on electrical states and cooperative behavior of its constituting parts at different levels of organization, from sub-trees and branches to voltage- and ligand-gated ion channels populating the dendritic membrane. More than two decades of experimental and computer simulation studies have brought numerous phenomenological demonstrations of influence of the dendritic structure on neuronal firing patterns. A necessary step forward is to comprehend these findings and build a firm theoretical basis, including quantitative relationships between geometrical and electrical characteristics determining intrinsic activity of neurons. The articles in this eBook represent progress achieved in a broad circle of laboratories studied various aspects of structure and function of the neuronal dendrites. The authors elucidate new details of dendritic mechanisms underlying intrinsic activity patterns in neurons and highlight important questions that remain open in this important domain of cellular and computational neuroscience.


Exploring Thalamocortical Interactions

Exploring Thalamocortical Interactions

Author: S. Murray Sherman

Publisher: Oxford University Press

Published: 2021-11-12

Total Pages: 241

ISBN-13: 019750387X

DOWNLOAD EBOOK

CELL TYPES IN THE THALAMUS AND CORTEX -- INTRINSIC MEMBRANE PROPERTIES -- SYNAPTIC PROPERTIES -- GLUTAMATERGIC DRIVERS AND MODULATORS -- FIRST AND HIGHER ORDER THALAMIC RELAYS -- THALAMIC CIRCUITRY -- BRIEF OVERVIEW OF CORTICAL ORGANIZATION -- CLASSIFICATION OF THALAMOCORTICAL AND CORTICOTHALAMIC MOTIFS -- SPIKE TIMING AND THALAMOCORTICAL INTERACTIONS -- PARALLEL PROCESSING OF SENSORY SIGNALS TO CORTEX -- THALAMOCORTICAL SUBSTRATES OF ATTENTION -- CORTICOTHALAMIC CIRCUITS LINKING SENSATION AND ACTION.


The NEURON Book

The NEURON Book

Author: Nicholas T. Carnevale

Publisher: Cambridge University Press

Published: 2006-01-12

Total Pages: 399

ISBN-13: 1139447831

DOWNLOAD EBOOK

The authoritative reference on NEURON, the simulation environment for modeling biological neurons and neural networks that enjoys wide use in the experimental and computational neuroscience communities. This book shows how to use NEURON to construct and apply empirically based models. Written primarily for neuroscience investigators, teachers, and students, it assumes no previous knowledge of computer programming or numerical methods. Readers with a background in the physical sciences or mathematics, who have some knowledge about brain cells and circuits and are interested in computational modeling, will also find it helpful. The NEURON Book covers material that ranges from the inner workings of this program, to practical considerations involved in specifying the anatomical and biophysical properties that are to be represented in models. It uses a problem-solving approach, with many working examples that readers can try for themselves.


Single Neuron Computation

Single Neuron Computation

Author: Thomas M. McKenna

Publisher: Academic Press

Published: 2014-05-19

Total Pages: 663

ISBN-13: 1483296067

DOWNLOAD EBOOK

This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real neurons is essential to the design of enhanced processor elements for use in the next generation of ANNs.The book covers computation in dendrites and spines, computational aspects of ion channels, synapses, patterned discharge and multistate neurons, and stochastic models of neuron dynamics. It is the most up-to-date presentation of biophysical and computational methods.


Neuroscience in the 21st Century

Neuroscience in the 21st Century

Author: Donald W. Pfaff

Publisher: Springer

Published: 2016-10-27

Total Pages: 0

ISBN-13: 9781493934737

DOWNLOAD EBOOK

Edited and authored by a wealth of international experts in neuroscience and related disciplines, this key new resource aims to offer medical students and graduate researchers around the world a comprehensive introduction and overview of modern neuroscience. Neuroscience research is certain to prove a vital element in combating mental illness in its various incarnations, a strategic battleground in the future of medicine, as the prevalence of mental disorders is becoming better understood each year. Hundreds of millions of people worldwide are affected by mental, behavioral, neurological and substance use disorders. The World Health Organization estimated in 2002 that 154 million people globally suffer from depression and 25 million people from schizophrenia; 91 million people are affected by alcohol use disorders and 15 million by drug use disorders. A more recent WHO report shows that 50 million people suffer from epilepsy and 24 million from Alzheimer’s and other dementias. Because neuroscience takes the etiology of disease—the complex interplay between biological, psychological, and sociocultural factors—as its object of inquiry, it is increasingly valuable in understanding an array of medical conditions. A recent report by the United States’ Surgeon General cites several such diseases: schizophrenia, bipolar disorder, early-onset depression, autism, attention deficit/ hyperactivity disorder, anorexia nervosa, and panic disorder, among many others. Not only is this volume a boon to those wishing to understand the future of neuroscience, it also aims to encourage the initiation of neuroscience programs in developing countries, featuring as it does an appendix full of advice on how to develop such programs. With broad coverage of both basic science and clinical issues, comprising around 150 chapters from a diversity of international authors and including complementary video components, Neuroscience in the 21st Century in its second edition serves as a comprehensive resource to students and researchers alike.


Jasper's Basic Mechanisms of the Epilepsies

Jasper's Basic Mechanisms of the Epilepsies

Author: Jeffrey Noebels

Publisher: OUP USA

Published: 2012-06-29

Total Pages: 1258

ISBN-13: 0199746540

DOWNLOAD EBOOK

Jasper's Basic Mechanisms, Fourth Edition, is the newest most ambitious and now clinically relevant publishing project to build on the four-decade legacy of the Jasper's series. In keeping with the original goal of searching for "a better understanding of the epilepsies and rational methods of prevention and treatment.", the book represents an encyclopedic compendium neurobiological mechanisms of seizures, epileptogenesis, epilepsy genetics and comordid conditions. Of practical importance to the clinician, and new to this edition are disease mechanisms of genetic epilepsies and therapeutic approaches, ranging from novel antiepileptic drug targets to cell and gene therapies.


The Neuron

The Neuron

Author: Irwin B. Levitan

Publisher: Oxford University Press, USA

Published: 2002

Total Pages: 640

ISBN-13: 9780195145236

DOWNLOAD EBOOK

Intended for use by advanced undergraduate, graduate and medical students, this book presents a study of the unique biochemical and physiological properties of neurons, emphasising the molecular mechanisms that generate and regulate their activity.


Handbook of Brain Microcircuits

Handbook of Brain Microcircuits

Author: Gordon M. Shepherd

Publisher: Oxford University Press

Published: 2018

Total Pages: 625

ISBN-13: 0190636114

DOWNLOAD EBOOK

In order to focus on principles, each chapter in this work is brief, organized around 1-3 wiring diagrams of the key circuits, with several pages of text that distil the functional significance of each microcircuit


Branching Morphogenesis

Branching Morphogenesis

Author: Jamie Davies

Publisher: Springer Science & Business Media

Published: 2007-03-20

Total Pages: 255

ISBN-13: 0387308733

DOWNLOAD EBOOK

Branching morphogenesis, the creation of branched structures in the body, is a key feature of animal and plant development. This book brings together, for the first time, expert researchers working on a variety of branching systems to present a state-of-the-art view of the mechanisms that control branching morphogenesis. Systems considered range from single cells, to blood vessel and drainage duct systems to entire body plans, and approaches range from observation through experiment to detailed biophysical modelling. The result is an integrated overview of branching.