Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions

Author: Holger Babinsky

Publisher: Cambridge University Press

Published: 2011-09-12

Total Pages: 481

ISBN-13: 1139498649

DOWNLOAD EBOOK

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.


Turbulent Shear Layers in Supersonic Flow

Turbulent Shear Layers in Supersonic Flow

Author: Alexander J. Smits

Publisher: Springer Science & Business Media

Published: 2006-05-11

Total Pages: 418

ISBN-13: 0387263055

DOWNLOAD EBOOK

A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.


Numerical Investigation of Compressible Turbulent Boundary Layers

Numerical Investigation of Compressible Turbulent Boundary Layers

Author: Muhammad Farrukh Shahab

Publisher: LAP Lambert Academic Publishing

Published: 2012-02

Total Pages: 228

ISBN-13: 9783848415151

DOWNLOAD EBOOK

As a prerequisite for relevant model development and improvement of design methodologies for supersonic vehicles, this study aims at investigating the influence of wall heat-transfer and shock interaction on the turbulence structure of supersonic boundary layers. Incipient separation conditions and two different wall thermal boundary conditions (adiabatic and cold) are considered. The analysis focuses on the evolution of mean and turbulent flow properties along the interaction region and in the relaxation region downstream of the shock-system. The strong influence of the mean pressure gradient is quantified through the analysis of mean flow profiles and boundary layer integral parameters. The anisotropic amplification of turbulent quantities through the interaction region is characterized and the turbulent events associated with the modification of the turbulence structure of the perturbed boundary layer are identified. The mean and turbulent thermal fields are shown to be strongly modified by the wall cooling which significantly dampens more particularly the turbulent thermal quantities levels across the boundary layer.


Separation measurements of supersonic turbulent boundary layers over compression corners

Separation measurements of supersonic turbulent boundary layers over compression corners

Author: Walter Bruce Gillette

Publisher:

Published: 1967

Total Pages: 111

ISBN-13:

DOWNLOAD EBOOK

To the designer of modern high-speed aerospace vehicles, separation of the boundary layer before macroscopic surface features is an important problem. A typical feature of interest is a compression corner, or ramp. To aid in the development of comprehensive theories concerning boundary layer separation before a compression corner, a series of experimental investigations were conducted for the adiabatic flow of a supersonic compressible gas over a compression corner. Tests were conducted at free-stream Mach Numbers of 2.00 to 4.00 in increments of 0.50, at flat plate Reynolds Numbers of 0.75 x 10 to the 7th and 1.5 x 10 to the 7th, and for compression angles of 10.3 deg, 20.1 deg, 30.5 deg, and 39.9 deg. Static pressure surveys of the flow ahead of and over the compression corner were made. These measurements were supplemented by high-speed schlieren photographs and shadowgraphs. The separation of the turbulent compressible boundary layer was found to have strong dependence on both the Mach Number and the Reynolds Number. For Mach Numbers less than 3.00, the separation distance ahead of the compression corner decreased with increasing Mach Number. For Mach Numbers of 3.50 and 4.00, the separation distance increased with Mach Number. At all Mach Numbers, an increase in Reynolds Number increased the separation distance. The Reynolds Number influence was greater at the higher Reynolds Numbers. Unsteadiness in the separation geometry occurred for separation distances greater than six or eight boundary layer thicknesses. The separation was found to result from a free interaction of the flow phenomena involved. (Author).