Molecular Biology of the Cell
Author:
Publisher:
Published: 2002
Total Pages: 0
ISBN-13: 9780815332183
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher:
Published: 2002
Total Pages: 0
ISBN-13: 9780815332183
DOWNLOAD EBOOKAuthor: Jean-Paul Renaud
Publisher: John Wiley & Sons
Published: 2020-01-09
Total Pages: 1437
ISBN-13: 1118900502
DOWNLOAD EBOOKWith the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
Author: Huimin Zhao
Publisher: John Wiley & Sons
Published: 2021-08-23
Total Pages: 41
ISBN-13: 3527344705
DOWNLOAD EBOOKA one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.
Author: Weibo Cai
Publisher: BoD – Books on Demand
Published: 2012-03-30
Total Pages: 488
ISBN-13: 9535103970
DOWNLOAD EBOOKProteins are indispensable players in virtually all biological events. The functions of proteins are coordinated through intricate regulatory networks of transient protein-protein interactions (PPIs). To predict and/or study PPIs, a wide variety of techniques have been developed over the last several decades. Many in vitro and in vivo assays have been implemented to explore the mechanism of these ubiquitous interactions. However, despite significant advances in these experimental approaches, many limitations exist such as false-positives/false-negatives, difficulty in obtaining crystal structures of proteins, challenges in the detection of transient PPI, among others. To overcome these limitations, many computational approaches have been developed which are becoming increasingly widely used to facilitate the investigation of PPIs. This book has gathered an ensemble of experts in the field, in 22 chapters, which have been broadly categorized into Computational Approaches, Experimental Approaches, and Others.
Author: Huzefa Rangwala
Publisher: John Wiley & Sons
Published: 2011-03-16
Total Pages: 611
ISBN-13: 111809946X
DOWNLOAD EBOOKA look at the methods and algorithms used to predict protein structure A thorough knowledge of the function and structure of proteins is critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this reference sheds light on the methods used for protein structure prediction and reveals the key applications of modeled structures. This indispensable book covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, readers will find an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction and they will acquire unique insight into the future applications of the modeled protein structures. The book begins with a thorough introduction to the protein structure prediction problem and is divided into four themes: a background on structure prediction, the prediction of structural elements, tertiary structure prediction, and functional insights. Within those four sections, the following topics are covered: Databases and resources that are commonly used for protein structure prediction The structure prediction flagship assessment (CASP) and the protein structure initiative (PSI) Definitions of recurring substructures and the computational approaches used for solving sequence problems Difficulties with contact map prediction and how sophisticated machine learning methods can solve those problems Structure prediction methods that rely on homology modeling, threading, and fragment assembly Hybrid methods that achieve high-resolution protein structures Parts of the protein structure that may be conserved and used to interact with other biomolecules How the loop prediction problem can be used for refinement of the modeled structures The computational model that detects the differences between protein structure and its modeled mutant Whether working in the field of bioinformatics or molecular biology research or taking courses in protein modeling, readers will find the content in this book invaluable.
Author: Harald Tschesche
Publisher: Walter de Gruyter
Published: 2011-12-23
Total Pages: 379
ISBN-13: 3110252368
DOWNLOAD EBOOKThis book presents a survey of recent developments in protein biochemistry. Top researchers in the field of protein biochemistry describe modern methods to address the challenges of protein purification by three-phase partitioning, and their folding and degradation by the functions of chaperones. The significance of peptide purity for fibril formation is addressed as well as the use of target oriented peptide arrays in palliative approaches in mucoviszidose. The design and application of protein epitope mimetics just as the structural resolving of the misfolding of various mutant proteins in serpinopathies enlarge our tools in resolving pathophysiological imbalances.
Author: Ilan Samish
Publisher: Humana
Published: 2016-12-03
Total Pages: 0
ISBN-13: 9781493966356
DOWNLOAD EBOOKThe aim this volume is to present the methods, challenges, software, and applications of this widespread and yet still evolving and maturing field. Computational Protein Design, the first book with this title, guides readers through computational protein design approaches, software and tailored solutions to specific case-study targets. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Protein Design aims to ensure successful results in the further study of this vital field.
Author: Colin Kleanthous
Publisher: Frontiers in Molecular Biology
Published: 2000
Total Pages: 370
ISBN-13: 9780199637607
DOWNLOAD EBOOKThe purpose of Protein-Protein Recognition is to bring together concepts and systems pertaining to protein-protein interactions in a single unifying volume. In the light of the information from the genome sequencing projects and the increase in structural information it is an opportune time totry to make generalizations about how and why proteins form complexes with each other. The emphasis of the book is on heteromeric complexes (complexes in which each of the components can exist in an unbound state) and will use well-studied model systems to explain the processes of formingcomplexes. After an introductory section on the kinetics, thermodynamics, analysis, and classification of protein-protein interactions, weak, intermediate, and high affinity complexes are dealt with in turn. Weak affinity complexes are represented by electron transfer proteins and integrincomplexes. Anti-lysozyme antibodies, the MHC proteins and their interactions with T-cell receptors, and the protein interactions of eukaryotic signal transduction are the systems used to explain complexes with intermediate affinities. Finally, tight binding complexes are represented by theinteraction of protein inhibitors with serine proteases and by nuclease inhibitor complexes. Throughout the chapters common themes are the technologies which have had the greatest impact, how specificity is determined, how complexes are stabilized, and medical and industrial applications.
Author: M Michael Gromiha
Publisher: World Scientific
Published: 2020-03-05
Total Pages: 424
ISBN-13: 9811211884
DOWNLOAD EBOOKThis book is indexed in Chemical Abstracts ServiceThe interactions of proteins with other molecules are important in many cellular activities. Investigations have been carried out to understand the recognition mechanism, identify the binding sites, analyze the the binding affinity of complexes, and study the influence of mutations on diseases. Protein interactions are also crucial in structure-based drug design.This book covers computational analysis of protein-protein, protein-nucleic acid and protein-ligand interactions and their applications. It provides up-to-date information and the latest developments from experts in the field, using illustrations to explain the key concepts and applications. This volume can serve as a single source on comparative studies of proteins interacting with proteins/DNAs/RNAs/carbohydrates and small molecules.
Author: Pandjassarame Kangueane
Publisher: Springer
Published: 2018-02-16
Total Pages: 216
ISBN-13: 9811073473
DOWNLOAD EBOOKThis book illustrates the importance and significance of the molecular (physical and chemical) and evolutionary (gene fusion) principles of protein-protein and domain-domain interactions towards the understanding of cell division, disease mechanism and target definition in drug discovery. It describes the complex issues associated with this phenomenon using cutting edge advancement in Bioinformatics and Bioinformation Discovery. The chapters provide current information pertaining to the types of protein-protein complexes (homodimers, heterodimers, multimer complexes) in context with various specific and sensitive biological functions. The significance of such complex formation in human biology in the light of molecular evolution is also highlighted using several examples. The chapters also describe recent advancements on the molecular principles of protein-protein interaction with reference to evolution towards target identification in drug discovery. Finally, the book also elucidates a comprehensive yet a representative description of a large number of challenges associated with the molecular interaction of proteins.