Chemical Bonding at Surfaces and Interfaces

Chemical Bonding at Surfaces and Interfaces

Author: Anders Nilsson

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 533

ISBN-13: 0080551912

DOWNLOAD EBOOK

Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces


Chemisorption and Reactivity on Supported Clusters and Thin Films:

Chemisorption and Reactivity on Supported Clusters and Thin Films:

Author: R.M. Lambert

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 534

ISBN-13: 9401589119

DOWNLOAD EBOOK

Heterogeneous catalysis provides the backbone of the world's chemical and oil industries. The innate complexity of practical catalytic systems suggests that useful progress should be achievable by investigating key aspects of catalysis by experimental studies on idealised model systems. Thin films and supported clusters are two promising types of model system that can be used for this purpose, since they mimic important aspects of the properties of practical dispersed catalysts. Similarly, appropriate theoretical studies of chemisorption and surface reaction clusters or extended slab systems can provide valuable information on the factors that underlie bonding and catalytic activity. This volume describes such experimental and theoretical approaches to the surface chemistry and catalytic behaviour of metals, metal oxides and metal/metal oxide systems. An introduction to the principles and main themes of heterogeneous catalysis is followed by detailed accounts of the application of modern experimental and theoretical techniques to fundamental problems. The application of advanced experimental methods is complemented by a full description of theoretical procedures, including Hartree-Fock, density functional and similar techniques. The relative merits of the various approaches are considered and directions for future progress are indicated.


Acidity and Basicity

Acidity and Basicity

Author: Eike Brunner

Publisher: Springer Science & Business Media

Published: 2008-02-20

Total Pages: 280

ISBN-13: 3540739645

DOWNLOAD EBOOK

This is the first handbook on zeolites and other microporous materials. It is an up-to-date, highly sophisticated collection of information for those who deal with zeolites in industry or at academic institutions as well as being a guide for newcomers.


Auger Electron Spectroscopy

Auger Electron Spectroscopy

Author: Donald T. Hawkins

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 305

ISBN-13: 1468413872

DOWNLOAD EBOOK

Auger electron spectroscopy is rapidly developing into the single most powerful analytical technique in basic and applied science.for investigating the chemical and structural properties of solids. Its ex plosive growth beginning in 1967 was triggered by the development of Auger analyzers capable of de tecting one atom layer of material in a fraction of a second. Continued growth was guaranteed firstly by the commercial availability of apparatus which combined the capabilities of scanning electron mi croscopy and ion-mill depth profiling with Auger analysis, and secondly by the increasing need to know the atomistics of many processes in fundamental research and engineering applications. The expanding use of Auger analysis was accompanied by an increase in the number of publications dealing with it. Because of the developing nature of Auger spectroscopy, the articles have appeared in many different sources covering diverse disciplines, so that it is extremely difficult to discover just what has or has not been subjected to Auger analysis. In this situation, a comprehensive bibliography is obviou-sly useful to those both inside and outside the field. For those in the field, this bibliography should be a wonderful time saver for locating certain references, in researching a particular topic, or when considering various aspects of instrumentation or data analysis. This bibliography not only provides the most complete listing of references pertinent to surface Auger analysis available today, but it is also a basis for extrapolating from past trends to future expectations.


Metal Oxide Catalysis, 2 Volume Set

Metal Oxide Catalysis, 2 Volume Set

Author: S. David Jackson

Publisher: John Wiley & Sons

Published: 2008-12-23

Total Pages: 887

ISBN-13: 3527626123

DOWNLOAD EBOOK

With its two-volume structure, this handbook and ready reference allows for comprehensive coverage of both characterization and applications, while uniform editing throughout ensures that the structure remains consistent. The result is an up-to-date review of metal oxides in catalysis. The first volume covers a range of techniques that are used to characterize oxides, with each chapter written by an expert in the field. Volume 2 goes on to cover the use of metal oxides in catalytic reactions. For all chemists and engineers working in the field of heterogeneous catalysis.


Poisoning and Promotion in Catalysis based on Surface Science Concepts and Experiments

Poisoning and Promotion in Catalysis based on Surface Science Concepts and Experiments

Author: M.P. Kiskinova

Publisher: Elsevier

Published: 1991-11-29

Total Pages: 359

ISBN-13: 0080887406

DOWNLOAD EBOOK

The topics covered in this book include a variety of adsorption and model reaction studies on clean and modified single crystal metal surfaces obtained by means of properly selected surface sensitive techniques. The accent is on the revelation of the physics and chemistry involved in the effects of various modifiers on the adsorptive and reactivity properties of the surface with respect to different reactants. In this book current information that contributes to the fundamental understanding of the effect of additives is summarized. Some of the additives act as promoters, others as poisons, in a number of important catalytic reactions. A description of single- and double-component systems has been obtained by using surface-sensitive techniques, particularly suited for this purpose. For the benefit of the reader, a short summary of the main surface science techniques has been given in Chapter 2. Three general and interrelated topics are reviewed. The first concerns the interaction of electronegative (Cl, S, Se, C, N, O, P) and electropositive (alkali metals) atoms with metal surfaces (Chapter 4). The second topic covers the chemisorptive properties of metal surfaces modified by varying amounts of additives with respect to different reactants (CO, NO, N2, O2, H2, CO2, NH3, H2O and hydrocarbons) (Chapters 5 and 6). In particular the adsorption kinetics and energetics, and the electronic, structural and reactive properties of the coadsorbate systems are considered, whereby particular attention is given to recent surface science studies with well-characterized, single crystal, metal surfaces. In these chapters, special attention is paid to showing the contribution of different factors (the nature and adsorption state of the modifier and the coadsorbed molecule, the structure of the adsorbed layer, the type of interactions in the mixed overlayers, etc.) to the modifier effects. In the discussion of the third topic, model studies of several important catalytic reactions (Fischer-Tropsch synthesis, ammonia synthesis, CO oxidation, water-gas shift synthesis) on modified metal surfaces (Chapter 8) are considered.The book will be particularly useful to scientists who are interested in adsorption phenomena, surface properties and catalysis. It should also prove invaluable to those addressing the questions of condensed matter (surfaces and interfaces), materials science (e.g. corrosion of metals) and electrochemistry.


Advanced Solid Catalysts for Renewable Energy Production

Advanced Solid Catalysts for Renewable Energy Production

Author: González-Cortés, Sergio

Publisher: IGI Global

Published: 2018-01-19

Total Pages: 545

ISBN-13: 1522539042

DOWNLOAD EBOOK

In recent years, the replacement of non-renewable crude oil by renewable sources has been addressed, particularly in developed countries. Its main driving force has been the increasing demand and limited reserves of fossil fuels, the greenhouse gas effect, and the need of securing energy supplies. Advanced Solid Catalysts for Renewable Energy Production provides emerging research on renewable energy production, catalysts, and environmental effects of increased productivity. While highlighting the challenges for future generations to develop in the sustainable energy age, readers will learn the importance of new approaches not only for synthesizing more active and selective (nano)catalysts, but also, for designing innovative catalytic processes that can eventually meet the growing energy efficiency demand and overcome the environmental issues. This book is an important resource for academicians, university researchers, technology developers, and graduate level students.