Mathematical Structuralism

Mathematical Structuralism

Author: Geoffrey Hellman

Publisher: Cambridge University Press

Published: 2018-11-29

Total Pages: 167

ISBN-13: 110863074X

DOWNLOAD EBOOK

The present work is a systematic study of five frameworks or perspectives articulating mathematical structuralism, whose core idea is that mathematics is concerned primarily with interrelations in abstraction from the nature of objects. The first two, set-theoretic and category-theoretic, arose within mathematics itself. After exposing a number of problems, the Element considers three further perspectives formulated by logicians and philosophers of mathematics: sui generis, treating structures as abstract universals, modal, eliminating structures as objects in favor of freely entertained logical possibilities, and finally, modal-set-theoretic, a sort of synthesis of the set-theoretic and modal perspectives.


A Structural Account of Mathematics

A Structural Account of Mathematics

Author: Charles S. Chihara

Publisher: Clarendon Press

Published: 2004

Total Pages: 395

ISBN-13: 0199267537

DOWNLOAD EBOOK

Charles Chihara's new book develops and defends a structural view of the nature of mathematics, and uses it to explain a number of striking features of mathematics that have puzzled philosophers for centuries. The view is used to show that, in order to understand how mathematical systems areapplied in science and everyday life, it is not necessary to assume that its theorems either presuppose mathematical objects or are even true.Chihara builds upon his previous work, in which he presented a new system of mathematics, the constructibility theory, which did not make reference to, or presuppose, mathematical objects. Now he develops the project further by analysing mathematical systems currently used by scientists to show howsuch systems are compatible with this nominalistic outlook. He advances several new ways of undermining the heavily discussed indispensability argument for the existence of mathematical objects made famous by Willard Quine and Hilary Putnam. And Chihara presents a rationale for the nominalisticoutlook that is quite different from those generally put forward, which he maintains have led to serious misunderstandings.A Structural Account of Mathematics will be required reading for anyone working in this field.


Mathematics and Its Applications

Mathematics and Its Applications

Author: Jairo José da Silva

Publisher: Springer

Published: 2017-08-22

Total Pages: 274

ISBN-13: 3319630733

DOWNLOAD EBOOK

This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what does it mean to exist, mathematical structures: what are they and how do we know them, how different layers of mathematical structuring relate to each other and to perceptual structures, and how to use mathematics to find out how the world is. The book simultaneously develops along two lines, both inspired and enlightened by Edmund Husserl’s phenomenological philosophy. One line leads to the establishment of a particular version of mathematical structuralism, free of “naturalist” and empiricist bias. The other leads to a logical-epistemological explanation and justification of the applicability of mathematics carried out within a unique structuralist perspective. This second line points to the “unreasonable” effectiveness of mathematics in physics as a means of representation, a tool, and a source of not always logically justified but useful and effective heuristic strategies.


The Prehistory of Mathematical Structuralism

The Prehistory of Mathematical Structuralism

Author: Erich H. Reck

Publisher: Oxford University Press

Published: 2020

Total Pages: 469

ISBN-13: 0190641223

DOWNLOAD EBOOK

This edited volume explores the previously underacknowledged 'pre-history' of mathematical structuralism, showing that structuralism has deep roots in the history of modern mathematics. The contributors explore this history along two distinct but interconnected dimensions. First, they reconsider the methodological contributions of major figures in the history of mathematics. Second, they re-examine a range of philosophical reflections from mathematically-inclinded philosophers like Russell, Carnap, and Quine, whose work led to profound conclusions about logical, epistemological, and metaphysic.


Philosophy of Mathematics

Philosophy of Mathematics

Author: Stewart Shapiro

Publisher: Oxford University Press

Published: 1997-08-07

Total Pages: 290

ISBN-13: 0190282525

DOWNLOAD EBOOK

Do numbers, sets, and so forth, exist? What do mathematical statements mean? Are they literally true or false, or do they lack truth values altogether? Addressing questions that have attracted lively debate in recent years, Stewart Shapiro contends that standard realist and antirealist accounts of mathematics are both problematic. As Benacerraf first noted, we are confronted with the following powerful dilemma. The desired continuity between mathematical and, say, scientific language suggests realism, but realism in this context suggests seemingly intractable epistemic problems. As a way out of this dilemma, Shapiro articulates a structuralist approach. On this view, the subject matter of arithmetic, for example, is not a fixed domain of numbers independent of each other, but rather is the natural number structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle. Using this framework, realism in mathematics can be preserved without troublesome epistemic consequences. Shapiro concludes by showing how a structuralist approach can be applied to wider philosophical questions such as the nature of an "object" and the Quinean nature of ontological commitment. Clear, compelling, and tautly argued, Shapiro's work, noteworthy both in its attempt to develop a full-length structuralist approach to mathematics and to trace its emergence in the history of mathematics, will be of deep interest to both philosophers and mathematicians.


Mathematical Thought and its Objects

Mathematical Thought and its Objects

Author: Charles Parsons

Publisher: Cambridge University Press

Published: 2007-12-24

Total Pages: 400

ISBN-13: 1139467271

DOWNLOAD EBOOK

Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition and presents a conception of it distantly inspired by that of Kant, which describes a basic kind of access to abstract objects and an element of a first conception of the infinite.


Truth, Existence and Explanation

Truth, Existence and Explanation

Author: Mario Piazza

Publisher: Springer

Published: 2018-10-24

Total Pages: 278

ISBN-13: 3319933426

DOWNLOAD EBOOK

This book contains more than 15 essays that explore issues in truth, existence, and explanation. It features cutting-edge research in the philosophy of mathematics and logic. Renowned philosophers, mathematicians, and younger scholars provide an insightful contribution to the lively debate in this interdisciplinary field of inquiry. The essays look at realism vs. anti-realism as well as inflationary vs. deflationary theories of truth. The contributors also consider mathematical fictionalism, structuralism, the nature and role of axioms, constructive existence, and generality. In addition, coverage also looks at the explanatory role of mathematics and the philosophical relevance of mathematical explanation. The book will appeal to a broad mathematical and philosophical audience. It contains work from FilMat, the Italian Network for the Philosophy of Mathematics. These papers collected here were also presented at their second international conference, held at the University of Chieti-Pescara, May 2016.


Mathematics as a Science of Patterns

Mathematics as a Science of Patterns

Author: Michael D. Resnik

Publisher: Oxford University Press

Published: 1997

Total Pages: 300

ISBN-13: 9780198236085

DOWNLOAD EBOOK

Resnik expresses his commitment to a structuralist philosophy of mathematics and links this to a defence of realism about the metaphysics of mathematics - the view that mathematics is about things that really exist.


An Aristotelian Realist Philosophy of Mathematics

An Aristotelian Realist Philosophy of Mathematics

Author: J. Franklin

Publisher: Springer

Published: 2014-04-09

Total Pages: 316

ISBN-13: 1137400730

DOWNLOAD EBOOK

Mathematics is as much a science of the real world as biology is. It is the science of the world's quantitative aspects (such as ratio) and structural or patterned aspects (such as symmetry). The book develops a complete philosophy of mathematics that contrasts with the usual Platonist and nominalist options.