Structural Physics of Nuclear Fusion

Structural Physics of Nuclear Fusion

Author: Stoyan Sarg

Publisher: Createspace Independent Pub

Published: 2013-04-07

Total Pages: 212

ISBN-13: 9781482620030

DOWNLOAD EBOOK

Remarkable advances in cold fusion experiments have raised the hope for a safer and cheaper nuclear energy. The results, however, cannot be explained from the point of view of current physical understanding of nuclear fusion. This is an obstacle to endorsement and investment in this field. The research needs a supporting theory. The present book suggests a new approach for analysis of the results and offers practical recommendations based on the physical models of atomic nuclei derived in the BSM-Supergravitation Unified theory (BSM-SG). The book provides: (1) a method for analysis of the LENR experiments using the BSM-SG atomic models; (b) a selection of isotopes suitable for a more efficient energy yield with a minimum of radioactive byproducts; (c) practical considerations for selection of the technical method and the reaction environment.The BSM-SG theory is based on a concept of space that follows the view of Michael Faraday and the recommendations of James Maxwell about the properties of the envisioned space medium, known as Aether. The concept of an Aether (Ether) was abandoned in favor of the quantum mechanical formalism adopted in the first quarter of 20th century. However, Albert Einstein was against this approach and openly expressed his concerns after he developed General Relativity. In his monograph “Sidelights on relativity” (1921) he wrote: “To deny the ether is ultimately to assume that empty space has no physical qualities whatever” (p.23) and “According to general theory of relativity space without ether is unthinkable” (p. 23).From our point of view, the major problem for recognition of the feasibility of LENR is the adopted quantum mechanical formalism. In quantum mechanics and particles physics, all elementary and subelementary particles are assumed spherical without any geometrical structure. Then the data interpretation of scattering experiments leads to a very small atomic nucleus on the order of a femtometer. This leads to a conclusion of a very strong Coulomb barrier that might be overcome only at temperatures of millions of degrees. The results from LENR experiments are in a sharp contrast to this consideration. According to BSM-SG theory, the physical models of protons and neutrons have superdense material structures with the shape of a folded and a twisted torus, respectively. They are much larger but thinner, so the Coulomb barrier also has a non-spherical shape and it is not so strong. The protons and neutrons are held in the nucleus by a Supergravitational (SG) field, which is behind the strong nuclear forces. The protons and neutrons in the atomic nuclei form three-dimensional fractal structures. The spatial geometry of the nuclear structures defines the row-column pattern of the periodic table with identifiable features of the valences, isotope stability, nuclear spin and chemical bond directions. The analysis leads to a hypothesis that the superdense nucleus causes a micro-curvature – a general relativistic effect around the nucleus. It has a feature of energy storage that corresponds to the mass deficit or nuclear binding energy expressed by Einstein's equation, E = mc^2. The fusion or fission reaction causes a small change of the micro-curvature, so the difference in the binding energy is released as gamma and particle radiation that is finally converted to heat.The analysis of some LENR experiments shows that the excited state of hydrogen and deuterium, known as the Rydberg state, facilitates some fusion reactions. According to BSM-SG, the Rydberg state is an ion-electron pair, with a finite size at the boundary of the SG field, while possessing a strong magnetic field due to the dominated magnetic moment of the electron. Additionally, the anomalous magnetic moment of the electron provides a constant driving momentum. When combined with a proper nuclear spin state of a selected heavier element, this momentum assists the magnetic field interactions, and this leads to nuclear fusion.


Fundamentals in Nuclear Physics

Fundamentals in Nuclear Physics

Author: Jean-Louis Basdevant

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 516

ISBN-13: 0387250956

DOWNLOAD EBOOK

Covers all the phenomenological and experimental data on nuclear physics and demonstrates the latest experimental developments that can be obtained. Introduces modern theories of fundamental processes, in particular the electroweak standard model, without using the sophisticated underlying quantum field theoretical tools. Incorporates all major present applications of nuclear physics at a level that is both understandable by a majority of physicists and scientists of many other fields, and usefull as a first introduction for students who intend to pursue in the domain.


University Physics

University Physics

Author: OpenStax

Publisher:

Published: 2016-11-04

Total Pages: 622

ISBN-13: 9781680920451

DOWNLOAD EBOOK

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.


Structural Alloys for Nuclear Energy Applications

Structural Alloys for Nuclear Energy Applications

Author: Robert Odette

Publisher: Newnes

Published: 2019-08-15

Total Pages: 676

ISBN-13: 012397349X

DOWNLOAD EBOOK

High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.


Nuclear Structure Physics

Nuclear Structure Physics

Author: Amritanshu Shukla

Publisher: CRC Press

Published: 2020-10-21

Total Pages: 417

ISBN-13: 1000172686

DOWNLOAD EBOOK

Nuclear structure Physics connects to some of our fundamental questions about the creation of universe and its basic constituents. At the same time, precise knowledge on the subject has lead to develop many important tools of human kind such as proton therapy, radioactive dating etc. This book contains chapters on some of the crucial and trending research topics in nuclear structure, including the nuclei lying on the extremes of spin, isospin and mass. A better theoretical understanding of these topics is important beyond the confines of the nuclear structure community. Additionally, the book will showcase the applicability and success of the different nuclear effective interaction parameters near the drip line, where hints for level reordering have already been seen, and where one can test the isospin-dependence of the interaction. The book offers comprehensive coverage of the most essential topics, including: • Nuclear Structure of Nuclei at or Near Drip-Lines • Synthesis challenges and properties of Superheavy nuclei • Nuclear Structure and Nuclear models - Ab-initio calculations, cluster models, Shell-model/DSM, RMF, Skyrme • Shell Closure, Magicity and other novel features of nuclei at extremes • Structure of Toroidal, Bubble Nuclei, halo and other exotic nuclei These topics are not only very interesting from theoretical nuclear physics perspective but are also quite complimentary for ongoing nuclear physics experimental program worldwide. It is hoped that the book chapters written by experienced and well known researchers/experts will be helpful for the master students, graduate students and researchers and serve as a standard & uptodate research reference book on the topics covered.


Quantum Mechanics for Nuclear Structure

Quantum Mechanics for Nuclear Structure

Author: Kris L. G. Heyde

Publisher:

Published: 2019

Total Pages: 0

ISBN-13: 9780750321792

DOWNLOAD EBOOK

This book, the first of a two-volume set, provides a comprehensive introduction to quantum mechanics for advanced undergraduate and postgraduate students entering the field of nuclear structure studies via two-state systems: both polarized photons and spin-1/2 particles. This leads to the logic behind the physical structure and an axiomatic formulation using linear spaces and operators. The one-dimensional harmonic oscillator is used to illustrate the mechanics of quantized systems, reaching to time dependence and coherent states. Measurement theory is introduced. The transformation theory of space and time leads to wave functions. The role of group theory and rotations then leads to the quantization of angular momentum. Central force problems are handled algebraically. The development is completed with quantization of motion of a charged particle in a magnetic field. Part of IOP Series in Nuclear Spectroscopy and Nuclear Structure.


The Science of the Cold Fusion Phenomenon

The Science of the Cold Fusion Phenomenon

Author: Hideo Kozima

Publisher: Elsevier

Published: 2006-09-26

Total Pages: 209

ISBN-13: 0080463150

DOWNLOAD EBOOK

Broken up in to three sections, The Science of the Cold Fusion Phenomenon gives a unified explanation of all the significant data on the Cold Fusion Phenomena to date. It presents a history of the Cold Fusion Phenomenon (CFP), gives the fundamental experimental results of the CFP and presents a quantum mechanical treatment of physical problems associated with cold fusion. - Overviews the abundance of research and investigation that followed the 'cold fusion scandal' in 1989 - Explores the fundamental science behind the original Fleischmann experiment


Magnetic Fusion Technology

Magnetic Fusion Technology

Author: Thomas J. Dolan

Publisher: Springer Science & Business Media

Published: 2014-02-10

Total Pages: 816

ISBN-13: 1447155564

DOWNLOAD EBOOK

Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.


Nuclear Power Safety

Nuclear Power Safety

Author: James H. Rust

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 419

ISBN-13: 1483285448

DOWNLOAD EBOOK

A concise and current treatment of the subject of nuclear power safety, this work addresses itself to such issues of public concern as: radioactivity in routine effluents and its effect on human health and the environment, serious reactor accidents and their consequences, transportation accidents involving radioactive waste, the disposal of radioactive waste, particularly high-level wastes, and the possible theft of special nuclear materials and their fabrication into a weapon by terrorists. The implementation of the defense-in-depth concept of nuclear power safety is also discussed. Of interest to all undergraduate and graduate students of nuclear engineering, this work assumes a basic understanding of scientific and engineering principles and some familiarity with nuclear power reactors


Nuclear Physics

Nuclear Physics

Author: National Research Council

Publisher: National Academies Press

Published: 1999-03-31

Total Pages: 222

ISBN-13: 0309173663

DOWNLOAD EBOOK

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.