Structural Mechanics in Lightweight Engineering

Structural Mechanics in Lightweight Engineering

Author: Christian Mittelstedt

Publisher: Springer Nature

Published: 2021-07-01

Total Pages: 674

ISBN-13: 3030751937

DOWNLOAD EBOOK

This book provides a comprehensive yet concise presentation of the analysis methods of lightweight engineering in the context of the statics of beam structures and is divided into four sections. Starting from very general remarks on the fundamentals of elasticity theory, the first section also addresses plane problems as well as strength criteria of isotropic materials. The second section is devoted to the analytical treatment of the statics of beam structures, addressing beams under bending, shear and torsion. The third section deals with the work and energy methods in lightweight construction, spanning classical methods and modern computational methods such as the finite element method. Finally, the fourth section addresses more advanced beam models, discussing hybrid structures as well as laminated and sandwich beams, in addition to shear field beams and shear deformable beams. This book is intended for students at technical colleges and universities, as well as for engineers in practice and researchers in engineering.


Structural Mechanics

Structural Mechanics

Author: Einar N. Strømmen

Publisher: Springer Nature

Published: 2020-05-25

Total Pages: 368

ISBN-13: 3030443183

DOWNLOAD EBOOK

This text book covers the principles and methods of load effect calculations that are necessary for engineers and designers to evaluate the strength and stability of structural systems. It contains the mathematical development from basic assumptions to final equations ready for practical use. It starts at a basic level and step by step it brings the reader up to a level where the necessary design safety considerations to static load effects can be performed, i.e. to a level where cross sectional forces and corresponding stresses can be calculated and compared to the strength of the system. It contains a comprehensive coverage of elastic buckling, providing the basis for the evaluation of structural stability. It includes general methods enabling designers to calculate structural displacements, such that the system may fulfil its intended functions. It is taken for granted that the reader possess good knowledge of calculus, differential equations and basic matrix operations. The finite element method for line-like systems has been covered, but not the finite element method for shells and plates.


The Mathematical Foundation of Structural Mechanics

The Mathematical Foundation of Structural Mechanics

Author: F. Hartmann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 383

ISBN-13: 3642824013

DOWNLOAD EBOOK

This book attempts to acquaint engineers who have mastered the essentials of structural mechanics with the mathematical foundation of their science, of structural mechanics of continua. The prerequisites are modest. A good working knowledge of calculus is sufficient. The intent is to develop a consistent and logical framework of theory which will provide a general understanding of how mathematics forms the basis of structural mechanics. Emphasis is placed on a systematic, unifying and rigorous treatment. Acknowledgements The author feels indebted to the engineers Prof. D. Gross, Prof. G. Mehlhorn and Prof. H. G. Schafer (TH Darmstadt) whose financial support allowed him to follow his inclinations and to study mathematics, to Prof. E. Klingbeil and Prof. W. Wendland (TH Darmstadt) for their unceasing effort to achieve the impossible, to teach an engineer mathematics, to the staff of the Department of Civil Engineering at the University of California, Irvine, for their generous hospitality in the academic year 1980-1981, to Prof. R. Szilard (Univ. of Dortmund) for the liberty he granted the author in his daily chores, to Mrs. Thompson (Univ. of Dortmund) and Prof. L. Kollar (Budapest/Univ. of Dortmund) for their help in the preparation of the final draft, to my young colleagues, Dipl.-Ing. S. Pickhardt, Dipl.-Ing. D. Ziesing and Dipl.-Ing. R. Zotemantel for many fruitful discussions, and to cando ing. P. Schopp and Frau Middeldorf for their help in the production of the manuscript. Dortmund, January 1985 Friedel Hartmann Contents Notations ........................................................... XII Introduction ........................................................ .


Fundamentals of Structural Mechanics

Fundamentals of Structural Mechanics

Author: Keith D. Hjelmstad

Publisher: Springer Science & Business Media

Published: 2007-03-14

Total Pages: 485

ISBN-13: 0387233318

DOWNLOAD EBOOK

A solid introduction to basic continuum mechanics, emphasizing variational formulations and numeric computation. The book offers a complete discussion of numerical method techniques used in the study of structural mechanics.


Mechanics of Structural Elements

Mechanics of Structural Elements

Author: Vladimir Slivker

Publisher: Springer Science & Business Media

Published: 2006-12-18

Total Pages: 787

ISBN-13: 3540447210

DOWNLOAD EBOOK

The book systematically presents variational principles and methods of analysis for applied elasticity and structural mechanics. The variational approach is used consistently for both, constructing numerical procedures and deriving basic governing equations of applied mechanics of solids; it is the derivation of equations where this approach is most powerful and best grounded by mathematics.


Research and Applications in Structural Engineering, Mechanics and Computation

Research and Applications in Structural Engineering, Mechanics and Computation

Author: Alphose Zingoni

Publisher: CRC Press

Published: 2013-08-15

Total Pages: 960

ISBN-13: 1315850788

DOWNLOAD EBOOK

Research and Applications in Structural Engineering, Mechanics and Computation contains the Proceedings of the Fifth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2013, Cape Town, South Africa, 2-4 September 2013). Over 420 papers are featured. Many topics are covered, but the contributions may be seen to fall


Advances in Structural Engineering

Advances in Structural Engineering

Author: Vasant Matsagar

Publisher: Springer

Published: 2014-12-12

Total Pages: 1033

ISBN-13: 8132221877

DOWNLOAD EBOOK

The book presents research papers presented by academicians, researchers, and practicing structural engineers from India and abroad in the recently held Structural Engineering Convention (SEC) 2014 at Indian Institute of Technology Delhi during 22 – 24 December 2014. The book is divided into three volumes and encompasses multidisciplinary areas within structural engineering, such as earthquake engineering and structural dynamics, structural mechanics, finite element methods, structural vibration control, advanced cementitious and composite materials, bridge engineering, and soil-structure interaction. Advances in Structural Engineering is a useful reference material for structural engineering fraternity including undergraduate and postgraduate students, academicians, researchers and practicing engineers.


An Introduction to Structural Mechanics for Architects

An Introduction to Structural Mechanics for Architects

Author: Elías Cueto

Publisher: Springer

Published: 2018-05-23

Total Pages: 241

ISBN-13: 3319729357

DOWNLOAD EBOOK

This textbook offers an introductory course to structural mechanics for architects, including problems and solutions. It follows a completely different approach to structural mechanics than the usual books for engineering schools, making it much more attractive for architecture students and practitioners. It also offers a different point of view for engineering students, as it provides them with a more intuitive understanding of structural mechanics and the models therein.Instead of studying the classical theory of linear elasticity and then particularizing it to simple structures, this book analyzes structures in a historic and also typological order. The book starts with cable structures and stone arches, followed by trusses and, finally, frame structures made of beams. For every typology, the latest, state-of-the-art theory in the field is introduced in a very didactic way.


Nonlinear Structural Mechanics

Nonlinear Structural Mechanics

Author: Walter Lacarbonara

Publisher: Springer Science & Business Media

Published: 2013-01-09

Total Pages: 812

ISBN-13: 1441912762

DOWNLOAD EBOOK

This book reviews the theoretical framework of nonlinear mechanics, covering computational methods, applications, parametric investigations of nonlinear phenomena and mechanical interpretation towards design. Builds skills via increasing levels of complexity.


Classical Beam Theories of Structural Mechanics

Classical Beam Theories of Structural Mechanics

Author: Andreas Öchsner

Publisher: Springer Nature

Published: 2021-06-13

Total Pages: 193

ISBN-13: 3030760359

DOWNLOAD EBOOK

This book provides a systematic and thorough overview of the classical bending members based on the theory for thin beams (shear-rigid) according to Euler-Bernoulli, and the theories for thick beams (shear-flexible) according to Timoshenko and Levinson. The understanding of basic, i.e., one-dimensional structural members, is essential in applied mechanics. A systematic and thorough introduction to the theoretical concepts for one-dimensional members keeps the requirements on engineering mathematics quite low, and allows for a simpler transfer to higher-order structural members. The new approach in this textbook is that it treats single-plane bending in the x-y plane as well in the x-z plane equivalently and applies them to the case of unsymmetrical bending. The fundamental understanding of these one-dimensional members allows a simpler understanding of thin and thick plate bending members. Partial differential equations lay the foundation to mathematically describe the mechanical behavior of all classical structural members known in engineering mechanics. Based on the three basic equations of continuum mechanics, i.e., the kinematics relationship, the constitutive law, and the equilibrium equation, these partial differential equations that describe the physical problem can be derived. Nevertheless, the fundamental knowledge from the first years of engineering education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills, might be required to master this topic.