Strongly Correlated Fermi Systems

Strongly Correlated Fermi Systems

Author: Miron Amusia

Publisher: Springer Nature

Published: 2020-07-16

Total Pages: 385

ISBN-13: 3030503593

DOWNLOAD EBOOK

This book focuses on the topological fermion condensation quantum phase transition (FCQPT), a phenomenon that reveals the complex behavior of all strongly correlated Fermi systems, such as heavy fermion metals, quantum spin liquids, quasicrystals, and two-dimensional systems, considering these as a new state of matter. The book combines theoretical evaluations with arguments based on experimental grounds demonstrating that the entirety of very different strongly correlated Fermi systems demonstrates a universal behavior induced by FCQPT. In contrast to the conventional quantum phase transition, whose physics in the quantum critical region are dominated by thermal or quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT are controlled by a system of quasiparticles resembling the Landau quasiparticles. The book discusses the modification of strongly correlated systems under the action of FCQPT, representing the “missing” instability, which paves the way for developing an entirely new approach to condensed matter theory; and presents this physics as a new method for studying many-body objects. Based on the authors’ own theoretical investigations, as well as salient theoretical and experimental studies conducted by others, the book is well suited for both students and researchers in the field of condensed matter physics.


Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems

Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems

Author: Igor V. Lerner

Publisher: Springer Science & Business Media

Published: 2002-07-31

Total Pages: 1200

ISBN-13: 9781402007491

DOWNLOAD EBOOK

The physics of strongly correlated fermions and bosons in a disordered envi ronment and confined geometries is at the focus of intense experimental and theoretical research efforts. Advances in material technology and in low temper ature techniques during the last few years led to the discoveries of new physical of atomic gases and a possible metal phenomena including Bose condensation insulator transition in two-dimensional high mobility electron structures. Situ ations were the electronic system is so dominated by interactions that the old concepts of a Fermi liquid do not necessarily make a good starting point are now routinely achieved. This is particularly true in the theory of low dimensional systems such as carbon nanotubes, or in two dimensional electron gases in high mobility devices where the electrons can form a variety of new structures. In many of these sys tems disorder is an unavoidable complication and lead to a host of rich physical phenomena. This has pushed the forefront of fundamental research in condensed matter towards the edge where the interplay between many-body correlations and quantum interference enhanced by disorder has become the key to the understand ing of novel phenomena.


Bosonization and Strongly Correlated Systems

Bosonization and Strongly Correlated Systems

Author: Alexander O. Gogolin

Publisher: Cambridge University Press

Published: 2004-12-16

Total Pages: 452

ISBN-13: 0521617197

DOWNLOAD EBOOK

Detailed account of important technique for researchers and graduate students working in condensed matter and theoretical physics.


Strongly Correlated Systems

Strongly Correlated Systems

Author: Adolfo Avella

Publisher: Springer Science & Business Media

Published: 2011-11-01

Total Pages: 487

ISBN-13: 3642218318

DOWNLOAD EBOOK

The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.


Transport Phenomena in Strongly Correlated Fermi Liquids

Transport Phenomena in Strongly Correlated Fermi Liquids

Author: Hiroshi Kontani

Publisher: Springer

Published: 2013-02-11

Total Pages: 178

ISBN-13: 3642353657

DOWNLOAD EBOOK

In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.


Electron Correlation in Metals

Electron Correlation in Metals

Author: K. Yamada

Publisher: Cambridge University Press

Published: 2010-06-24

Total Pages: 257

ISBN-13: 1139453068

DOWNLOAD EBOOK

Since the discovery of high Tc superconductivity, the role of electron correlation on superconductivity has been an important issue in condensed matter physics. Here the role of electron correlation in metals is explained in detail on the basis of the Fermi liquid theory. The book, originally published in 2004, discusses the following issues: enhancements of electronic specific heat and magnetic susceptibility, effects of electron correlation on transport phenomena such as electric resistivity and Hall coefficient, magnetism, Mott transition and unconventional superconductivity. These originate commonly from the Coulomb repulsion between electrons. In particular, superconductivity in strongly correlated electron systems is discussed with a unified point of view. This book is written to explain interesting physics in metals for undergraduate and graduate students and researchers in condensed matter physics.


Theoretical Methods for Strongly Correlated Electrons

Theoretical Methods for Strongly Correlated Electrons

Author: David Sénéchal

Publisher: Springer Science & Business Media

Published: 2006-05-09

Total Pages: 370

ISBN-13: 0387217177

DOWNLOAD EBOOK

Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.