Many of the topics in this book are outgrowths of the spectacular new understanding of duality in string theory which emerged around 1995. They include the AdS/CFT correspondence and its relation to holography, the matrix theory formulation of M theory, the structure of black holes in string theory, the structure of D-branes and M-branes, and detailed development of dualities with N = 1 and N = 2 supersymmetry. In addition, there are lectures covering experimental and phenomenological aspects of the Standard Model and its extensions, and discussions on cosmology including both theoretical aspects and the exciting new experimental evidence for a non-zero cosmological constant. Contents: TASI Lectures on Branes, Black Holes and Anti-De Sitter Space (M J Duff); D-Brane Primer (C V Johnson); TASI Lectures on Black Holes in String Theory (A W Peet); TASI Lectures: Cosmology for String Theorists (S M Carroll); TASI Lectures on Matrix Theory (T Banks); TASI Lectures on M Theory Phenomenology (M Dine); TASI Lectures: Introduction to the AdS/CFT Correspondence (I R Klebanov); TASI Lectures on Compactification and Duality (D R Morrison); Compactification, Geometry and Duality: N =2 (P S Aspinwall); TASI Lectures on Non-BPS D-Brane Systems (J H Schwarz); Lectures on Warped Compactifications and Stringy Brane Constructions (S Kachru); TASI Lectures on the Holographic Principle (D Bigatti & L Susskind). Readership: Graduate students, postdoctoral fellows and researchers in high energy physics.
A unified theory embracing all physical phenomena is a major goal of theoretical physics. In the early 1980s, many physicists looked to eleven-dimensional supergravity in the hope that it might provide that elusive superunified theory. In 1984 supergravity was knocked off its pedestal by ten-dimensional superstrings, one-dimensional objects whose v
String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697.
The contributions to this volume of the famous summer school in Les Houches cover the recent developments in supersymmetric string theory, the gauge theory/string theory correspondence and string duality. The book is a comprehensive introduction to the recent developments in string/M-theory and quantum gravity.
Homotopy Quantum Field Theory (HQFT) is a branch of Topological Quantum Field Theory founded by E. Witten and M. Atiyah. It applies ideas from theoretical physics to study principal bundles over manifolds and, more generally, homotopy classes of maps from manifolds to a fixed target space. This book is the first systematic exposition of Homotopy Quantum Field Theory. It starts with a formal definition of an HQFT and provides examples of HQFTs in all dimensions. The main body of the text is focused on $2$-dimensional and $3$-dimensional HQFTs. A study of these HQFTs leads to new algebraic objects: crossed Frobenius group-algebras, crossed ribbon group-categories, and Hopf group-coalgebras. These notions and their connections with HQFTs are discussed in detail. The text ends with several appendices including an outline of recent developments and a list of open problems. Three appendices by M. Muger and A. Virelizier summarize their work in this area. The book is addressed to mathematicians, theoretical physicists, and graduate students interested in topological aspects of quantum field theory. The exposition is self-contained and well suited for a one-semester graduate course. Prerequisites include only basics of algebra and topology.
The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.
This book covers some recent advances in string theory and extra dimensions. Intended mainly for advanced graduate students in theoretical physics, it presents a rare combination of formal and phenomenological topics, based on the annual lectures given at the School of the Theoretical Advanced Study Institute (2001) — a traditional event that brings together graduate students in high energy physics for an intensive course of advanced learning. The lecturers in the School are leaders in their fields.The first lecture, by E D'Hoker and D Freedman, is a systematic introduction to the gauge-gravity correspondence, focusing in particular on correlation functions in the conformal case. The second, by L Dolan, provides an introduction to perturbative string theory, including recent advances on backgrounds involving Ramond-Ramond fluxes. The third, by S Gubser, explains some of the basic facts about special holonomy and its uses in string theory and M-theory. The fourth, by J Hewett, surveys the TeV phenomenology of theories with large extra dimensions. The fifth, by G Kane, presents the case for supersymmetry at the weak scale and some of its likely experimental consequences. The sixth, by A Liddle, surveys recent developments in cosmology, particularly with regard to recent measurements of the CMB and constraints on inflation. The seventh, by B Ovrut, presents the basic features of heterotic M-theory, including constructions that contain the Standard Model. The eighth, by K Rajagopal, explains the recent advances in understanding QCD at low temperatures and high densities in terms of color superconductivity. The ninth, by M Sher, summarizes grand unified theories and baryogenesis, including discussions of supersymmetry breaking and the Standard Model Higgs mechanism. The tenth, by M Spiropulu, describes collider physics, from a survey of current and future machines to examples of data analyses relevant to theories beyond the Standard Model. The eleventh, by M Strassler, is an introduction to supersymmetric gauge theory, focusing on Wilsonian renormalization and analogies between three- and four-dimensional theories. The twelfth, by W Taylor and B Zwiebach, introduces string field theory and discusses recent advances in understanding open string tachyon condensation. The thirteenth, by D Waldram, discusses explicit model building in heterotic M-theory, emphasizing the role of the E8 gauge fields.The written presentation of these lectures is detailed yet straightforward, and they will be of use to both students and experienced researchers in high-energy theoretical physics for years to come.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences