Stratospheric Polar Vortex Variability in the Northern Hemisphere

Stratospheric Polar Vortex Variability in the Northern Hemisphere

Author:

Publisher:

Published: 2019

Total Pages: 47

ISBN-13:

DOWNLOAD EBOOK

Regions that have experienced recent successive cold winters such as the Northeast of North America and Siberia have endured critical social and economic impacts from anomalous low temperatures in recent years, despite warming global temperatures. It is well known that the Tropospheric Polar Vortex (TPV), or jet stream, is a primary influence on many mid-latitude winter weather patterns. However, the strong circumpolar westerlies that maximize at around 60° latitude just above the tropopause, known as the Stratospheric Polar Vortex (SPV), can affect tropospheric circulation and thus winter weather in the Northern Hemisphere. Strong upward propagating waves can affect the geographic extent and strength of the SPV resulting in a weakened polar vortex state, which can in turn bring persistent weather events to the mid-latitudes. Here, an index of SPV spatiotemporal variability is presented using observation based analysis of zonal wind and geopotential height to show changes in SPV behavior at a seasonal scale from 1950-2018. Utilizing the CMIP5 suite of global climate models, historical and projected simulations of the SPV's climatological extent and strength are analyzed from 1915 to the end of this century, taking into account models with enhanced stratospheric representation. Simulated results are largely consistent with trends in the observational data, which suggest continued increases in average SPV size throughout this century. If future SPV disturbances increase in frequency, there could be negative impacts in ecosystem and agricultural health, infrastructure damage, and to human safety. A more advanced understanding of SPV trends and anomalous events could improve forecasts of cold air outbreaks (CAOs) and severe or persistent winter weather.


Middle Atmosphere Dynamics

Middle Atmosphere Dynamics

Author: David G. Andrews

Publisher: Academic Press

Published: 2016-07-21

Total Pages: 502

ISBN-13: 0080954677

DOWNLOAD EBOOK

For advanced undergraduate and beginning graduate students in atmospheric, oceanic, and climate science, Atmosphere, Ocean and Climate Dynamics is an introductory textbook on the circulations of the atmosphere and ocean and their interaction, with an emphasis on global scales. It will give students a good grasp of what the atmosphere and oceans look like on the large-scale and why they look that way. The role of the oceans in climate and paleoclimate is also discussed. The combination of observations, theory and accompanying illustrative laboratory experiments sets this text apart by making it accessible to students with no prior training in meteorology or oceanography. * Written at a mathematical level that is appealing for undergraduates and beginning graduate students * Provides a useful educational tool through a combination of observations and laboratory demonstrations which can be viewed over the web * Contains instructions on how to reproduce the simple but informative laboratory experiments * Includes copious problems (with sample answers) to help students learn the material.


Variability of the Polar Stratospheric Vortex and Its Impact on Surface Climate Patterns

Variability of the Polar Stratospheric Vortex and Its Impact on Surface Climate Patterns

Author: Aditi Sheshadri

Publisher:

Published: 2015

Total Pages: 145

ISBN-13:

DOWNLOAD EBOOK

This thesis investigates various aspects of the variability of the stratospheric polar vortex and the effect of this variability on tropospheric weather and climate patterns on various timescales. In the first part of this work, an improved idealized model was developed to study the coupled stratosphere-troposphere system. The model is forced by relaxation to a specified equilibrium temperature profile, which varies seasonally only in the stratosphere. This model setup permits the investigation of stratosphere-troposphere interactions on seasonal timescales, without the complication of an internal tropospheric seasonal cycle. The model is forced with different shapes and amplitudes of simple bottom topography, resulting in a range of stratospheric climates. The effect of these different kinds of topography on the seasonal variability of the strength of the polar vortex, the average timing and variability in timing of the final breakup of the vortex (final warming events), the conditions of occurrence and frequency of midwinter warming events, and the impact of the stratospheric seasonal cycle on the troposphere are explored. The inclusion of wavenumber 1 and wavenumber 2 topographies results in very different stratospheric seasonal variability. Hemispheric differences in stratospheric seasonal variability are recovered in the model with appropriate choices of wave-2 topography. In the model experiment with a realistic Northern Hemisphere-like frequency of midwinter warming events, the distribution of the intervals between these events suggest that the model has no year to year memory. When forced with wave-1 topography, the gross features of seasonal variability are similar to those forced with wave-2 topography, but the dependence on forcing magnitude is weaker. Further, the frequency of major warming events has a non-monotonic dependence on forcing magnitude, and never reaches the frequency observed in the northern hemisphere. In the second part of the thesis, the impact of stratospheric ozone depletion on the Antarctic polar vortex and its subsequent influences on southern hemisphere surface climate patterns is investigated. It is verified that stratospheric final warming events have an impact on tropospheric circulation in a simplified GCM with seasonal variations in the stratosphere only. The model produces qualitatively realistic final warming events whose influence extends down to the surface, much like what has been reported in observational analyses. The hypothesis that recent observed trends in surface westerlies in the Southern Hemisphere are directly consequent on observed trends in the timing of stratospheric final warming events is tested. It is confirmed that there is a statistically significant shift towards later final warming events in the years with large ozone depletion. However it is found that the observed trends in surface westerlies cannot be attributed simply to this shift towards later final warming events. Finally, responses of the idealized AGCM to polar stratospheric cooling that mimics the radiative effects of stratospheric ozone depletion are studied. It is found that there are two factors that play a role in setting the magnitude and persistence of the model's surface response to cooling: the seasonal cycle of tropospheric annular mode timescales, and whether or not the imposed cooling leads to the presence of stratospheric westerlies at a time when easterlies were prevalent in the control run. That is, the surface response is sensitive to the timing of the imposed polar stratospheric cooling.


Middle Atmosphere

Middle Atmosphere

Author: PLUMB

Publisher: Birkhäuser

Published: 2013-11-21

Total Pages: 465

ISBN-13: 3034858256

DOWNLOAD EBOOK

PAGEOPH, stratosphere, these differences provide us with new evidence, interpretation of which can materially help to advance our understanding of stratospheric dynamics in general. It is now weil established that smaller-scale motions-in particular gravity waves and turbulence-are of fundamental importance in the general circulation of the mesosphere; they seem to be similarly, if less spectacularly, significant in the troposphere, and probably also in the stratosphere. Our understanding of these motions, their effects on the mean circulation and their mutual interactions is progressing rapidly, as is weil illustrated by the papers in this issue; there are reports of observational studies, especially with new instruments such as the Japanese MV radar, reviews of the state of theory, a laboratory study and an analysis of gravity waves and their effects in the high resolution "SKYHI" general circulation model. There are good reasons to suspect that gravity waves may be of crucial significance in making the stratospheric circulation the way it is (modeling experience being one suggestive piece of evidence for this). Direct observational proof has thus far been prevented by the difficulty of making observations of such scales of motion in this region; in one study reported here, falling sphere observations are used to obtain information on the structure and intensity of waves in the upper stratosphere.


Sub-seasonal to Seasonal Prediction

Sub-seasonal to Seasonal Prediction

Author: Andrew Robertson

Publisher: Elsevier

Published: 2018-10-19

Total Pages: 588

ISBN-13: 012811715X

DOWNLOAD EBOOK

The Gap Between Weather and Climate Forecasting: Sub-seasonal to Seasonal Prediction is an ideal reference for researchers and practitioners across the range of disciplines involved in the science, modeling, forecasting and application of this new frontier in sub-seasonal to seasonal (S2S) prediction. It provides an accessible, yet rigorous, introduction to the scientific principles and sources of predictability through the unique challenges of numerical simulation and forecasting with state-of-science modeling codes and supercomputers. Additional coverage includes the prospects for developing applications to trigger early action decisions to lessen weather catastrophes, minimize costly damage, and optimize operator decisions. The book consists of a set of contributed chapters solicited from experts and leaders in the fields of S2S predictability science, numerical modeling, operational forecasting, and developing application sectors. The introduction and conclusion, written by the co-editors, provides historical perspective, unique synthesis and prospects, and emerging opportunities in this exciting, complex and interdisciplinary field. Contains contributed chapters from leaders and experts in sub-seasonal to seasonal science, forecasting and applications Provides a one-stop shop for graduate students, academic and applied researchers, and practitioners in an emerging and interdisciplinary field Offers a synthesis of the state of S2S science through the use of concrete examples, enabling potential users of S2S forecasts to quickly grasp the potential for application in their own decision-making Includes a broad set of topics, illustrated with graphic examples, that highlight interdisciplinary linkages


The Stratosphere

The Stratosphere

Author: L. M. Polvani

Publisher: John Wiley & Sons

Published: 2013-04-30

Total Pages: 514

ISBN-13: 1118671597

DOWNLOAD EBOOK

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 190. The Stratosphere: Dynamics, Transport, and Chemistry is the first volume in 20 years that offers a comprehensive review of the Earth's stratosphere, increasingly recognized as an important component of the climate system. The volume addresses key advances in our understanding of the stratospheric circulation and transport and summarizes the last two decades of research to provide a concise yet comprehensive overview of the state of the field. This monograph reviews many important aspects of the dynamics, transport, and chemistry of the stratosphere by some of the world's leading experts, including up-to-date discussions of Dynamics of stratospheric polar vortices Chemistry and dynamics of the ozone hole Role of solar variability in the stratosphere Effect of gravity waves in the stratosphere Importance of atmospheric annular modes This volume will be of interest to graduate students and scientists who wish to learn more about the stratosphere. It will also be useful to atmospheric science departments as a textbook for classes on the stratosphere.


Decade-to-Century-Scale Climate Variability and Change

Decade-to-Century-Scale Climate Variability and Change

Author: National Research Council

Publisher: National Academies Press

Published: 1998-12-24

Total Pages: 161

ISBN-13: 0309060982

DOWNLOAD EBOOK

Society today may be more vulnerable to global-scale, long-term, climate change than ever before. Even without any human influence, past records show that climate can be expected to continue to undergo considerable change over decades to centuries. Measures for adaption and mitigation will call for policy decisions based on a sound scientific foundation. Better understanding and prediction of climate variations can be achieved most efficiently through a nationally recognized "dec-cen" science plan. This book articulates the scientific issues that must be addressed to advance us efficiently toward that understanding and outlines the data collection and modeling needed.


The Stratosphere

The Stratosphere

Author: Karin G. Labitzke

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 239

ISBN-13: 3642585418

DOWNLOAD EBOOK

This book presents the history, phenomena, and relevance of the stratosphere. Beginning with the discovery of the stratosphere itself, the book explores various unexpected phenomena observed in the stratosphere, such as the ozone hole in 1984 and the influence of the 11-year solar cycle in 1987. It describes the interrelations of stratospheric phenomena and its effects on the variability of the climate system, as well as examines various human impacts on the system such as the decrease in the ozone layer.


Atmospheric and Oceanic Fluid Dynamics

Atmospheric and Oceanic Fluid Dynamics

Author: Geoffrey K. Vallis

Publisher: Cambridge University Press

Published: 2006-11-06

Total Pages: 772

ISBN-13: 1139459961

DOWNLOAD EBOOK

Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.


Stratosphere Troposphere Interactions

Stratosphere Troposphere Interactions

Author: K. Mohanakumar

Publisher: Springer Science & Business Media

Published: 2008-07-03

Total Pages: 424

ISBN-13: 1402082177

DOWNLOAD EBOOK

Stratospheric processes play a signi?cant role in regulating the weather and c- mate of the Earth system. Solar radiation, which is the primary source of energy for the tropospheric weather systems, is absorbed by ozone when it passes through the stratosphere, thereby modulating the solar-forcing energy reaching into the t- posphere. The concentrations of the radiatively sensitive greenhouse gases present in the lower atmosphere, such as water vapor, carbon dioxide, and ozone, control the radiation balance of the atmosphere by the two-way interaction between the stratosphere and troposphere. The stratosphere is the transition region which interacts with the weather s- tems in the lower atmosphere and the richly ionized upper atmosphere. Therefore, this part of the atmosphere provides a long list of challenging scienti?c problems of basic nature involving its thermal structure, energetics, composition, dynamics, chemistry, and modeling. The lower stratosphere is very much linked dynamically, radiatively,and chemically with the upper troposphere,even though the temperature characteristics of these regions are different. The stratosphere is a region of high stability, rich in ozone and poor in water - por and temperature increases with altitude. The lower stratospheric ozone absorbs the harmful ultraviolet (UV) radiation from the sun and protects life on the Earth. On the other hand, the troposphere has high concentrations of water vapor, is low in ozone, and temperature decreases with altitude. The convective activity is more in the troposphere than in the stratosphere.