A whole decades research collated, organised and synthesised into one single book! Following a 60-page review of the seminal treatises of Misner, Thorne, Wheeler and Weinberg on general relativity, Glendenning goes on to explore the internal structure of compact stars, white dwarfs, neutron stars, hybrids, strange quark stars, both the counterparts of neutron stars as well as of dwarfs. This is a self-contained treatment and will be of interest to graduate students in physics and astrophysics as well as others entering the field.
The meaning of "quark matter" is twofold: 1) It refers to compound states known as "subquarks" (the most fundamental constituents of matter), with quarks consisting of nuclear matter or "nucleons" (the constituents of the nucleus), and 2) compound states of quarks that consist of roughly equal numbers of up, down, and strange quarks, and which may be absolutely stable. Recently, both types of quark matter have become very intriguing subjects in physics and astronomy since the recently discovered Higgs boson, which may be taken as a composite object (possibly, a bound state of subquark-antisubquark pairs). Additionally, many recently observed compact stars have been considered "strange stars" (stars consisting of quark matter). In this book, these subjects in physics and astronomy are discussed without requiring readers to comprehend mathematical details. This book consists of three chapters: Chapter One: "Quark Matter and Strange Stars", Chapter Two: "Composites of Subquarks as Quark Matter", and Chapter Three: "Dark Energy, Dark Matter, and Strange Stars". Their contents include the following: In Chapter One, quark matter and strange stars are discussed in detail. In Chapter Two, the unified subquark model of all fundamental particles (quarks, leptons, and gauge and Higgs bosons) and forces (strong, electromagnetic, weak, and gravitational forces) is discussed in detail. In Chapter Three, pregeometry, in which the general theory of relativity for gravity can be derived as an approximate theory at long distances, is briefly reviewed. Furthermore, special and general theories of "inconstancy" in pregeometry in which fundamental physical constants may vary are introduced. Finally, possible solutions to the most puzzling problem in current cosmology of dark energy and dark matter in the universe are presented. Between Chapters One and Two, pictures of Dr. Abdus Salam added, as Dr. Salam was one of the founders of subquark models. Also, between Chapters Two and Three, pictures of Dr. Andrei Sakharov are added, as Dr. Sakharov was the founder of pregeometry.
The book gives an extended review of theoretical and observational aspects of neutron star physics. With masses comparable to that of the Sun and radii of about ten kilometres, neutron stars are the densest stars in the Universe. This book describes all layers of neutron stars, from the surface to the core, with the emphasis on their structure and equation of state. Theories of dense matter are reviewed, and used to construct neutron star models. Hypothetical strange quark stars and possible exotic phases in neutron star cores are also discussed. Also covered are the effects of strong magnetic fields in neutron star envelopes.
In seven lectures of a pedagogical nature aimed at both researchers and graduate students the authors review important aspects of hadronic physics. The book contains a comprehensive review of recent experimental results obtained at the GSI collider. In particular, it covers chiral symmetry at finite temperature and statistical methods applied to relativistic heavy ion collisions and gives a detailed presentation of the astrophysics of strange quark matter.
The Pacific Rim Conference originally started with one research concentration only - binary star research. The first Conference was held in Beijing, China, 1985, the second one in Seoul and Taejon, South Korea, 1990 and the third one in Chiang Mai, Thailand, 1995. In recent years, the conference series evolved into a much broader area of stellar astrophysics. The first such conference was held in Hong Kong in 1997. Kwong-Sang Cheng, a. k. a. one of the three Musketeers, documented the "accidental" development in writing in the Proceedings of the 1997 Pacific Rim Conference on Stellar Astrophysics (Volume 138 of the ASP Conference Series)! The meeting at Hong Kong University of Science and Technology covered three major topics: binary stars, compact stars and solar type stars. The conference was extremely successful. There was a general feeling among the participants that the conference on stellar astrophysics provided a good means to share ideas between such closely related disciplines. Unfortunately after the very successful meeting at HKST, Kwing L. Chan (another Musketeer) thought that he had already served and would not like to chair for another LOC for at least five years! After a few drinks at one of the watering holes in Wan Chai district of Hong Kong, Kwong-Sang Cheng was in very hiRh spirit and volunteered to taking on the responsibility of hosting the 51 Pacific Rim Conference at Hong Kong University in 1999.
Pulsars, generally accepted to be rotating neutron stars, are dense, neutron-packed remnants of massive stars that blew apart in supernova explosions. They are typically about 10 kilometers across and spin rapidly, often making several hundred rotations per second. Depending on star mass, gravity compresses the matter in the cores of pulsars up to more than ten times the density of ordinary atomic nuclei, thus providing a high-pressure environment in which numerous particle processes, from hyperon population to quark deconfinement to the formation of Boson condensates, may compete with each other. There are theoretical suggestions of even more ""exotic"" processes inside pulsars, such as the formation of absolutely stable strange quark matter, a configuration of matter even more stable than the most stable atomic nucleus, ^T56Fe. In the latter event, pulsars would be largely composed of pure quark matter, eventually enveloped in nuclear crust matter. These features combined with the tremendous recent progress in observational radio and x-ray astronomy make pulsars nearly ideal probes for a wide range of physical studies, complementing the quest of the behavior of superdense matter in terrestrial collider experiments. Written by an eminent author, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics gives a reliable account of the present status of such research, which naturally is to be performed at the interface between nuclear physics, particle physics, and Einstein's theory of relativity.
Neutron stars are the densest observable bodies in our universe. Born during the gravitational collapse of luminous stars - a birth heralded by spectacular supernova explosions - they open a window on a world where the state of the matter and the strengths of the fields are anything but ordinary. This book is a collection of pedagogical lectures on the theory of neutron stars, and especially their interiors, at the forefront of current research. It addresses graduate students and researchers alike, and should be particularly suitable as a text bridging the gap between standard textbook material and the research literature.
Supernovae, hypernovae and gamma-ray bursts are among the most energetic explosions in the universe. The light from these outbursts is, for a brief time, comparable to billions of stars and can outshine the host galaxy within which the explosions reside. Most of the heavy elements in the universe are formed within these energetic explosions. Surprisingly enough, the collapse of massive stars is the primary source of not just one, but all three of these explosions. As all of these explosions arise from stellar collapse, to understand one requires an understanding of the others. Stellar Collapse marks the first book to combine discussions of all three phenomena, focusing on the similarities and differences between them. Designed for graduate students and scientists newly entering this field, this book provides a review not only of these explosions, but the detailed physical models used to explain them from the numerical techniques used to model neutrino transport and gamma-ray transport to the detailed nuclear physics behind the evolution of the collapse to the observations that have led to these three classes of explosions.