A whole decades research collated, organised and synthesised into one single book! Following a 60-page review of the seminal treatises of Misner, Thorne, Wheeler and Weinberg on general relativity, Glendenning goes on to explore the internal structure of compact stars, white dwarfs, neutron stars, hybrids, strange quark stars, both the counterparts of neutron stars as well as of dwarfs. This is a self-contained treatment and will be of interest to graduate students in physics and astrophysics as well as others entering the field.
The book gives an extended review of theoretical and observational aspects of neutron star physics. With masses comparable to that of the Sun and radii of about ten kilometres, neutron stars are the densest stars in the Universe. This book describes all layers of neutron stars, from the surface to the core, with the emphasis on their structure and equation of state. Theories of dense matter are reviewed, and used to construct neutron star models. Hypothetical strange quark stars and possible exotic phases in neutron star cores are also discussed. Also covered are the effects of strong magnetic fields in neutron star envelopes.
The Pacific Rim Conference originally started with one research concentration only - binary star research. The first Conference was held in Beijing, China, 1985, the second one in Seoul and Taejon, South Korea, 1990 and the third one in Chiang Mai, Thailand, 1995. In recent years, the conference series evolved into a much broader area of stellar astrophysics. The first such conference was held in Hong Kong in 1997. Kwong-Sang Cheng, a. k. a. one of the three Musketeers, documented the "accidental" development in writing in the Proceedings of the 1997 Pacific Rim Conference on Stellar Astrophysics (Volume 138 of the ASP Conference Series)! The meeting at Hong Kong University of Science and Technology covered three major topics: binary stars, compact stars and solar type stars. The conference was extremely successful. There was a general feeling among the participants that the conference on stellar astrophysics provided a good means to share ideas between such closely related disciplines. Unfortunately after the very successful meeting at HKST, Kwing L. Chan (another Musketeer) thought that he had already served and would not like to chair for another LOC for at least five years! After a few drinks at one of the watering holes in Wan Chai district of Hong Kong, Kwong-Sang Cheng was in very hiRh spirit and volunteered to taking on the responsibility of hosting the 51 Pacific Rim Conference at Hong Kong University in 1999.
It has been over 100 years since the presentation of the Theory of General Relativity by Albert Einstein, in its final formulation, to the Royal Prussian Academy of Sciences. To celebrate 100 years of general relativity, World Scientific publishes this volume with a dual goal: to assess the current status of the field of general relativity in broad terms, and discuss future directions. The volume thus consists of broad overviews summarizing major developments over the past decades and their perspective contributions.
In seven lectures of a pedagogical nature aimed at both researchers and graduate students the authors review important aspects of hadronic physics. The book contains a comprehensive review of recent experimental results obtained at the GSI collider. In particular, it covers chiral symmetry at finite temperature and statistical methods applied to relativistic heavy ion collisions and gives a detailed presentation of the astrophysics of strange quark matter.
Feynman’s bestselling introduction to the mind-blowing physics of QED—presented with humor, not mathematics Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the public. In this extraordinary book, Feynman provides a lively and accessible introduction to QED, or quantum electrodynamics, an area of quantum field theory that describes the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned Feynman diagrams instead of advanced mathematics, Feynman clearly and humorously communicates the substance and spirit of QED to the nonscientist. With an incisive introduction by A. Zee that places Feynman’s contribution to QED in historical context and highlights Feynman’s uniquely appealing and illuminating style, this Princeton Science Library edition of QED makes Feynman’s legendary talks on quantum electrodynamics available to a new generation of readers.
A Hugo Award-winning author and music journalist explores the weird and wild story of when rock ’n’ roll met the sci-fi world of the 1970s As the 1960s drew to a close, and mankind trained its telescopes on other worlds, old conventions gave way to a new kind of hedonistic freedom that celebrated sex, drugs, and rock ’n’ roll. Derided as nerdy or dismissed as fluff, science fiction rarely gets credit for its catalyzing effect on this revolution. In Strange Stars, Jason Heller recasts sci-fi and pop music as parallel cultural forces that depended on one another to expand the horizons of books, music, and out-of-this-world imagery. In doing so, he presents a whole generation of revered musicians as the sci-fi-obsessed conjurers they really were: from Sun Ra lecturing on the black man in the cosmos, to Pink Floyd jamming live over the broadcast of the Apollo 11 moon landing; from a wave of Star Wars disco chart toppers and synthesiser-wielding post-punks, to Jimi Hendrix distilling the “purplish haze” he discovered in a pulp novel into psychedelic song. Of course, the whole scene was led by David Bowie, who hid in the balcony of a movie theater to watch 2001: A Space Odyssey, and came out a changed man… If today’s culture of Comic Con fanatics, superhero blockbusters, and classic sci-fi reboots has us thinking that the nerds have won at last, Strange Stars brings to life an era of unparalleled and unearthly creativity—in magazines, novels, films, records, and concerts—to point out that the nerds have been winning all along.
Join the students of Fairfield Junior High and the renegade lizard-monster, Rilo Buru, in a race against the Collector and his strange forces on an adventure that will change the natural and unnatural world forever.
Every atom of our bodies has been part of a star. Our very own star, the Sun, is crucial to the development and sustainability of life on Earth. This Very Short Introduction presents a modern, authoritative examination of how stars live, producing all the chemical elements beyond helium, and how they die, sometimes spectacularly, to end as remnants such as black holes. Andrew King shows how understanding the stars is key to understanding the galaxies they inhabit, and thus the history of our entire Universe, as well as the existence of planets like our own. King presents a fascinating exploration of the science of stars, from the mechanisms that allow stars to form and the processes that allow them to shine, as well as the results of their inevitable death. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
For Sean Edwards, fear hits the open road in a tale of mystery and alien terror. During a long drive home, he and his older sister, Patricia, nearly hit a young boy standing in the middle of the highway. They give the frightened boy a ride, unaware that something is on its way to give them all a lift.