Stochastic Volatility and Time Deformation

Stochastic Volatility and Time Deformation

Author: Joann Jasiak

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

In this paper, we study stochastic volatility models with time deformation. Such processes relate to the early work by Mandelbrot and Taylor (1967), Clark (1973), Tauchen and Pitts (1983), among others. In our setup, the latent process of stochastic volatility evolves in an operational time which differs from calendar time. The time deformation can be determined by past volume of trade, past returns, possibly with an asymmetric leverage effect, and other variables setting the pace of information arrival. The econometric specification exploits the state-space approach for stochastic volatility models proposed by Harvey, Ruiz and Shephard (1994) as well as the matching moment estimation procedure using SNP densities of stock returns and trading volume estimated by Gallant, Rossi and Tauchen (1992). Daily data on returns and trading volume of the NYSE are used in the empirical application. Supporting evidence for a time deformation representation is found and its impact on the behavior of returns and volume is analyzed. We find that increases in volume accelerate operational time, resulting in volatility being less persistent and subject to shocks with a higher innovation variance. Downward price movements have similar effects while upward price movements increase the persistence in volatility and decrease the dispersion of shocks by slowing down market time. We present the basic model as well as several extensions; in particular, we formulate and estimate a bivariate return-volume stochastic volatility model with time deformation. The latter is examined through bivariate impulse response profiles following the example of Gallant, Rossi and Tauchen (1993).


Stochastic Volatility in Financial Markets

Stochastic Volatility in Financial Markets

Author: Antonio Mele

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 156

ISBN-13: 1461545331

DOWNLOAD EBOOK

Stochastic Volatility in Financial Markets presents advanced topics in financial econometrics and theoretical finance, and is divided into three main parts. The first part aims at documenting an empirical regularity of financial price changes: the occurrence of sudden and persistent changes of financial markets volatility. This phenomenon, technically termed `stochastic volatility', or `conditional heteroskedasticity', has been well known for at least 20 years; in this part, further, useful theoretical properties of conditionally heteroskedastic models are uncovered. The second part goes beyond the statistical aspects of stochastic volatility models: it constructs and uses new fully articulated, theoretically-sounded financial asset pricing models that allow for the presence of conditional heteroskedasticity. The third part shows how the inclusion of the statistical aspects of stochastic volatility in a rigorous economic scheme can be faced from an empirical standpoint.


Stochastic Volatility and Realized Stochastic Volatility Models

Stochastic Volatility and Realized Stochastic Volatility Models

Author: Makoto Takahashi

Publisher: Springer Nature

Published: 2023-04-18

Total Pages: 120

ISBN-13: 981990935X

DOWNLOAD EBOOK

This treatise delves into the latest advancements in stochastic volatility models, highlighting the utilization of Markov chain Monte Carlo simulations for estimating model parameters and forecasting the volatility and quantiles of financial asset returns. The modeling of financial time series volatility constitutes a crucial aspect of finance, as it plays a vital role in predicting return distributions and managing risks. Among the various econometric models available, the stochastic volatility model has been a popular choice, particularly in comparison to other models, such as GARCH models, as it has demonstrated superior performance in previous empirical studies in terms of fit, forecasting volatility, and evaluating tail risk measures such as Value-at-Risk and Expected Shortfall. The book also explores an extension of the basic stochastic volatility model, incorporating a skewed return error distribution and a realized volatility measurement equation. The concept of realized volatility, a newly established estimator of volatility using intraday returns data, is introduced, and a comprehensive description of the resulting realized stochastic volatility model is provided. The text contains a thorough explanation of several efficient sampling algorithms for latent log volatilities, as well as an illustration of parameter estimation and volatility prediction through empirical studies utilizing various asset return data, including the yen/US dollar exchange rate, the Dow Jones Industrial Average, and the Nikkei 225 stock index. This publication is highly recommended for readers with an interest in the latest developments in stochastic volatility models and realized stochastic volatility models, particularly in regards to financial risk management.


Modeling Stochastic Volatility with Application to Stock Returns

Modeling Stochastic Volatility with Application to Stock Returns

Author: Mr.Noureddine Krichene

Publisher: International Monetary Fund

Published: 2003-06-01

Total Pages: 30

ISBN-13: 1451854846

DOWNLOAD EBOOK

A stochastic volatility model where volatility was driven solely by a latent variable called news was estimated for three stock indices. A Markov chain Monte Carlo algorithm was used for estimating Bayesian parameters and filtering volatilities. Volatility persistence being close to one was consistent with both volatility clustering and mean reversion. Filtering showed highly volatile markets, reflecting frequent pertinent news. Diagnostics showed no model failure, although specification improvements were always possible. The model corroborated stylized findings in volatility modeling and has potential value for market participants in asset pricing and risk management, as well as for policymakers in the design of macroeconomic policies conducive to less volatile financial markets.


Modelling and Simulation of Stochastic Volatility in Finance

Modelling and Simulation of Stochastic Volatility in Finance

Author: Christian Kahl

Publisher: Universal-Publishers

Published: 2008

Total Pages: 219

ISBN-13: 1581123833

DOWNLOAD EBOOK

The famous Black-Scholes model was the starting point of a new financial industry and has been a very important pillar of all options trading since. One of its core assumptions is that the volatility of the underlying asset is constant. It was realised early that one has to specify a dynamic on the volatility itself to get closer to market behaviour. There are mainly two aspects making this fact apparent. Considering historical evolution of volatility by analysing time series data one observes erratic behaviour over time. Secondly, backing out implied volatility from daily traded plain vanilla options, the volatility changes with strike. The most common realisations of this phenomenon are the implied volatility smile or skew. The natural question arises how to extend the Black-Scholes model appropriately. Within this book the concept of stochastic volatility is analysed and discussed with special regard to the numerical problems occurring either in calibrating the model to the market implied volatility surface or in the numerical simulation of the two-dimensional system of stochastic differential equations required to price non-vanilla financial derivatives. We introduce a new stochastic volatility model, the so-called Hyp-Hyp model, and use Watanabe's calculus to find an analytical approximation to the model implied volatility. Further, the class of affine diffusion models, such as Heston, is analysed in view of using the characteristic function and Fourier inversion techniques to value European derivatives.


Stochastic Volatility

Stochastic Volatility

Author: Neil Shephard

Publisher: Oxford University Press, USA

Published: 2005

Total Pages: 534

ISBN-13: 0199257205

DOWNLOAD EBOOK

Stochastic volatility is the main concept used in the fields of financial economics and mathematical finance to deal with time-varying volatility in financial markets. This work brings together some of the main papers that have influenced this field, andshows that the development of this subject has been highly multidisciplinary.