Functional Analysis for Probability and Stochastic Processes

Functional Analysis for Probability and Stochastic Processes

Author: Adam Bobrowski

Publisher: Cambridge University Press

Published: 2005-08-11

Total Pages: 416

ISBN-13: 9780521831666

DOWNLOAD EBOOK

This text presents selected areas of functional analysis that can facilitate an understanding of ideas in probability and stochastic processes. Topics covered include basic Hilbert and Banach spaces, weak topologies and Banach algebras, and the theory ofsemigroups of bounded linear operators.


Stochastic Processes and Functional Analysis

Stochastic Processes and Functional Analysis

Author: Alan C. Krinik

Publisher: CRC Press

Published: 2004-03-23

Total Pages: 526

ISBN-13: 9780203913574

DOWNLOAD EBOOK

This extraordinary compilation is an expansion of the recent American Mathematical Society Special Session celebrating M. M. Rao's distinguished career and includes most of the presented papers as well as ancillary contributions from session invitees. This book shows the effectiveness of abstract analysis for solving fundamental problems of stochas


Almost Periodic Stochastic Processes

Almost Periodic Stochastic Processes

Author: Paul H. Bezandry

Publisher: Springer Science & Business Media

Published: 2011-04-07

Total Pages: 247

ISBN-13: 1441994769

DOWNLOAD EBOOK

This book lays the foundations for a theory on almost periodic stochastic processes and their applications to various stochastic differential equations, functional differential equations with delay, partial differential equations, and difference equations. It is in part a sequel of authors recent work on almost periodic stochastic difference and differential equations and has the particularity to be the first book that is entirely devoted to almost periodic random processes and their applications. The topics treated in it range from existence, uniqueness, and stability of solutions for abstract stochastic difference and differential equations.


Asymptotic Analysis for Functional Stochastic Differential Equations

Asymptotic Analysis for Functional Stochastic Differential Equations

Author: Jianhai Bao

Publisher: Springer

Published: 2016-11-19

Total Pages: 159

ISBN-13: 3319469797

DOWNLOAD EBOOK

This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity.This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.


Introduction to Infinite Dimensional Stochastic Analysis

Introduction to Infinite Dimensional Stochastic Analysis

Author: Zhi-yuan Huang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 308

ISBN-13: 9401141088

DOWNLOAD EBOOK

The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy[2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin[l, 2, 3]. In 1931, Kolmogorov[l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman [1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals).


Stochastic Processes and Applications

Stochastic Processes and Applications

Author: Grigorios A. Pavliotis

Publisher: Springer

Published: 2014-11-19

Total Pages: 345

ISBN-13: 1493913239

DOWNLOAD EBOOK

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.


Stochastic Analysis

Stochastic Analysis

Author: Shigeo Kusuoka

Publisher: Springer Nature

Published: 2020-10-20

Total Pages: 218

ISBN-13: 9811588643

DOWNLOAD EBOOK

This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas. In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob–Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler–Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.


An Introduction to Probability and Stochastic Processes

An Introduction to Probability and Stochastic Processes

Author: James L. Melsa

Publisher: Courier Corporation

Published: 2013-01-01

Total Pages: 420

ISBN-13: 0486490998

DOWNLOAD EBOOK

Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.


Stochastic Processes and Functional Analysis

Stochastic Processes and Functional Analysis

Author: Jerome Goldstein

Publisher: CRC Press

Published: 2020-09-24

Total Pages: 296

ISBN-13: 1000105423

DOWNLOAD EBOOK

"Covers the areas of modern analysis and probability theory. Presents a collection of papers given at the Festschrift held in honor of the 65 birthday of M. M. Rao, whose prolific published research includes the well-received Marcel Dekker, Inc. books Theory of Orlicz Spaces and Conditional Measures and Applications. Features previously unpublished research articles by a host of internationally recognized scholars."


Upper and Lower Bounds for Stochastic Processes

Upper and Lower Bounds for Stochastic Processes

Author: Michel Talagrand

Publisher: Springer Science & Business Media

Published: 2014-02-12

Total Pages: 630

ISBN-13: 3642540759

DOWNLOAD EBOOK

The book develops modern methods and in particular the "generic chaining" to bound stochastic processes. This methods allows in particular to get optimal bounds for Gaussian and Bernoulli processes. Applications are given to stable processes, infinitely divisible processes, matching theorems, the convergence of random Fourier series, of orthogonal series, and to functional analysis. The complete solution of a number of classical problems is given in complete detail, and an ambitious program for future research is laid out.