Stochastic Orders

Stochastic Orders

Author: Moshe Shaked

Publisher: Springer Science & Business Media

Published: 2007-04-03

Total Pages: 482

ISBN-13: 0387346759

DOWNLOAD EBOOK

This reference text presents comprehensive coverage of the various notions of stochastic orderings, their closure properties, and their applications. Some of these orderings are routinely used in many applications in economics, finance, insurance, management science, operations research, statistics, and various other fields. And the value of the other notions of stochastic orderings needs further exploration. This book is an ideal reference for those interested in decision making under uncertainty and interested in the analysis of complex stochastic systems. It is suitable as a text for advanced graduate course on stochastic ordering and applications.


An Introduction to Stochastic Orders

An Introduction to Stochastic Orders

Author: Felix Belzunce

Publisher: Academic Press

Published: 2015-09-29

Total Pages: 175

ISBN-13: 0128038268

DOWNLOAD EBOOK

An Introduction to Stochastic Orders discusses this powerful tool that can be used in comparing probabilistic models in different areas such as reliability, survival analysis, risks, finance, and economics. The book provides a general background on this topic for students and researchers who want to use it as a tool for their research. In addition, users will find detailed proofs of the main results and applications to several probabilistic models of interest in several fields, and discussions of fundamental properties of several stochastic orders, in the univariate and multivariate cases, along with applications to probabilistic models. - Introduces stochastic orders and its notation - Discusses different orders of univariate stochastic orders - Explains multivariate stochastic orders and their convex, likelihood ratio, and dispersive orders


Stochastic Orders in Reliability and Risk

Stochastic Orders in Reliability and Risk

Author: Haijun Li

Publisher: Springer Science & Business Media

Published: 2013-06-22

Total Pages: 459

ISBN-13: 1461468922

DOWNLOAD EBOOK

Stochastic Orders in Reliability and Risk Management is composed of 19 contributions on the theory of stochastic orders, stochastic comparison of order statistics, stochastic orders in reliability and risk analysis, and applications. These review/exploratory chapters present recent and current research on stochastic orders reported at the International Workshop on Stochastic Orders in Reliability and Risk Management, or SORR2011, which took place in the City Hotel, Xiamen, China, from June 27 to June 29, 2011. The conference’s talks and invited contributions also represent the celebration of Professor Moshe Shaked, who has made comprehensive, fundamental contributions to the theory of stochastic orders and its applications in reliability, queueing modeling, operations research, economics and risk analysis. This volume is in honor of Professor Moshe Shaked. The work presented in this volume represents active research on stochastic orders and multivariate dependence, and exemplifies close collaborations between scholars working in different fields. The Xiamen Workshop and this volume seek to revive the community workshop tradition on stochastic orders and dependence and strengthen research collaboration, while honoring the work of a distinguished scholar.


Stochastic Orders and Their Applications

Stochastic Orders and Their Applications

Author: Moshe Shaked

Publisher:

Published: 1994

Total Pages: 580

ISBN-13:

DOWNLOAD EBOOK

Stochastic orders and inequalities are being used at an accelerated rate in many diverse areas of probability and statistics. This book provides the first unified, systematic, and accessible treatment of stochasticorders, addressing the growing importance of these orders with the presentation of numerous results that illustrate their usefulness and applicability. Ten insightful chapters emphasize the applications by specialists in probability and statistics, economics, operations research, and reliability theory. Applications include multivariate variability, epidemics, comparisons of risk and risk aversion, scheduling, and systems reliability theory.


First-order and Stochastic Optimization Methods for Machine Learning

First-order and Stochastic Optimization Methods for Machine Learning

Author: Guanghui Lan

Publisher: Springer Nature

Published: 2020-05-15

Total Pages: 591

ISBN-13: 3030395685

DOWNLOAD EBOOK

This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.


Applied Stochastic Analysis

Applied Stochastic Analysis

Author: Weinan E

Publisher: American Mathematical Soc.

Published: 2021-09-22

Total Pages: 305

ISBN-13: 1470465698

DOWNLOAD EBOOK

This is a textbook for advanced undergraduate students and beginning graduate students in applied mathematics. It presents the basic mathematical foundations of stochastic analysis (probability theory and stochastic processes) as well as some important practical tools and applications (e.g., the connection with differential equations, numerical methods, path integrals, random fields, statistical physics, chemical kinetics, and rare events). The book strikes a nice balance between mathematical formalism and intuitive arguments, a style that is most suited for applied mathematicians. Readers can learn both the rigorous treatment of stochastic analysis as well as practical applications in modeling and simulation. Numerous exercises nicely supplement the main exposition.


Stochastic Models in Reliability and Maintenance

Stochastic Models in Reliability and Maintenance

Author: Shunji Osaki

Publisher: Springer Science & Business Media

Published: 2012-11-02

Total Pages: 338

ISBN-13: 3540248080

DOWNLOAD EBOOK

Our daily lives can be maintained by the high-technology systems. Computer systems are typical examples of such systems. We can enjoy our modern lives by using many computer systems. Much more importantly, we have to maintain such systems without failure, but cannot predict when such systems will fail and how to fix such systems without delay. A stochastic process is a set of outcomes of a random experiment indexed by time, and is one of the key tools needed to analyze the future behavior quantitatively. Reliability and maintainability technologies are of great interest and importance to the maintenance of such systems. Many mathematical models have been and will be proposed to describe reliability and maintainability systems by using the stochastic processes. The theme of this book is "Stochastic Models in Reliability and Main tainability. " This book consists of 12 chapters on the theme above from the different viewpoints of stochastic modeling. Chapter 1 is devoted to "Renewal Processes," under which classical renewal theory is surveyed and computa tional methods are described. Chapter 2 discusses "Stochastic Orders," and in it some definitions and concepts on stochastic orders are described and ag ing properties can be characterized by stochastic orders. Chapter 3 is devoted to "Classical Maintenance Models," under which the so-called age, block and other replacement models are surveyed. Chapter 4 discusses "Modeling Plant Maintenance," describing how maintenance practice can be carried out for plant maintenance.


Foundations of Stochastic Analysis

Foundations of Stochastic Analysis

Author: M. M. Rao

Publisher: Courier Corporation

Published: 2011-01-01

Total Pages: 322

ISBN-13: 0486481220

DOWNLOAD EBOOK

Stochastic analysis involves the study of a process involving a randomly determined sequence of observations, each of which represents a sample of one element of probability distribution. This volume considers fundamental theories and contrasts the natural interplay between real and abstract methods. Starting with the introduction of the basic Kolmogorov-Bochner existence theorem, the text explores conditional expectations and probabilities as well as projective and direct limits. Subsequent chapters examine several aspects of discrete martingale theory, including applications to ergodic theory, likelihood ratios, and the Gaussian dichotomy theorem. Prerequisites include a standard measure theory course. No prior knowledge of probability is assumed; therefore, most of the results are proved in detail. Each chapter concludes with a problem section that features many hints and facts, including the most important results in information theory.


Permutation Tests for Stochastic Ordering and ANOVA

Permutation Tests for Stochastic Ordering and ANOVA

Author: Dario Basso

Publisher: Springer Science & Business Media

Published: 2009-04-20

Total Pages: 223

ISBN-13: 038785956X

DOWNLOAD EBOOK

Permutation testing for multivariate stochastic ordering and ANOVA designs is a fundamental issue in many scientific fields such as medicine, biology, pharmaceutical studies, engineering, economics, psychology, and social sciences. This book presents new advanced methods and related R codes to perform complex multivariate analyses. The prerequisites are a standard course in statistics and some background in multivariate analysis and R software.


Stochastic Modeling

Stochastic Modeling

Author: Barry L. Nelson

Publisher: Courier Corporation

Published: 2012-10-11

Total Pages: 338

ISBN-13: 0486139948

DOWNLOAD EBOOK

Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.