This book proposes, for the first time, a basic formulation for structural control that takes into account the stochastic dynamics induced by engineering excitations in the nature of non-stationary and non-Gaussian processes. Further, it establishes the theory of and methods for stochastic optimal control of randomly-excited engineering structures in the context of probability density evolution methods, such as physically-based stochastic optimal (PSO) control. By logically integrating randomness into control gain, the book helps readers design elegant control systems, mitigate risks in civil engineering structures, and avoid the dilemmas posed by the methods predominantly applied in current practice, such as deterministic control and classical linear quadratic Gaussian (LQG) control associated with nominal white noises.
In Stochastic Dynamics of Structures, Li and Chen present a unified view of the theory and techniques for stochastic dynamics analysis, prediction of reliability, and system control of structures within the innovative theoretical framework of physical stochastic systems. The authors outline the fundamental concepts of random variables, stochastic process and random field, and orthogonal expansion of random functions. Readers will gain insight into core concepts such as stochastic process models for typical dynamic excitations of structures, stochastic finite element, and random vibration analysis. Li and Chen also cover advanced topics, including the theory of and elaborate numerical methods for probability density evolution analysis of stochastic dynamical systems, reliability-based design, and performance control of structures. Stochastic Dynamics of Structures presents techniques for researchers and graduate students in a wide variety of engineering fields: civil engineering, mechanical engineering, aerospace and aeronautics, marine and offshore engineering, ship engineering, and applied mechanics. Practicing engineers will benefit from the concise review of random vibration theory and the new methods introduced in the later chapters. "The book is a valuable contribution to the continuing development of the field of stochastic structural dynamics, including the recent discoveries and developments by the authors of the probability density evolution method (PDEM) and its applications to the assessment of the dynamic reliability and control of complex structures through the equivalent extreme-value distribution." —A. H-S. Ang, NAE, Hon. Mem. ASCE, Research Professor, University of California, Irvine, USA "The authors have made a concerted effort to present a responsible and even holistic account of modern stochastic dynamics. Beyond the traditional concepts, they also discuss theoretical tools of recent currency such as the Karhunen-Loeve expansion, evolutionary power spectra, etc. The theoretical developments are properly supplemented by examples from earthquake, wind, and ocean engineering. The book is integrated by also comprising several useful appendices, and an exhaustive list of references; it will be an indispensable tool for students, researchers, and practitioners endeavoring in its thematic field." —Pol Spanos, NAE, Ryon Chair in Engineering, Rice University, Houston, USA
This book treats stochastic control theory and its applications in management. The main numerical techniques necessary for such applications are presented. Several advanced topics leading to optimal processes are dismissed. The book also considers the theory of some stochastic control processes and several applications to illustrate the ideas.
Computational optimization methods have matured over the last few years due to extensive research by applied mathematicians and engineers. These methods have been applied to many practical applications. Several general-purpose optimization programs and programs for specific engineering applications have become available to solve particular optimization problems.Written by leading researchers in the field of optimization, this highly readable book covers state-of-the-art computational algorithms as well as applications of optimization to structural and mechanical systems. Formulations of the problems and numerical solutions are presented, and topics requiring further research are also suggested.
This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.
This book is a result of many years of author's research and teaching on random vibration and control. It was used as lecture notes for a graduate course. It provides a systematic review of theory of probability, stochastic processes, and stochastic calculus. The feedback control is also reviewed in the book. Random vibration analyses of SDOF, MDOF and continuous structural systems are presented in a pedagogical order. The application of the random vibration theory to reliability and fatigue analysis is also discussed. Recent research results on fatigue analysis of non-Gaussian stress processes are also presented. Classical feedback control, active damping, covariance control, optimal control, sliding control of stochastic systems, feedback control of stochastic time-delayed systems, and probability density tracking control are studied. Many control results are new in the literature and included in this book for the first time. The book serves as a reference to the engineers who design and maintain structures subject to harsh random excitations including earthquakes, sea waves, wind gusts, and aerodynamic forces, and would like to reduce the damages of structural systems due to random excitations.· Comprehensive review of probability theory, and stochastic processes· Random vibrations· Structural reliability and fatigue, Non-Gaussian fatigue· Monte Carlo methods· Stochastic calculus and engineering applications· Stochastic feedback controls and optimal controls· Stochastic sliding mode controls· Feedback control of stochastic time-delayed systems· Probability density tracking control
International Symposium on Engineering under Uncertainty: Safety Assessment and Management (ISEUSAM - 2012) is organized by Bengal Engineering and Science University, India during the first week of January 2012 at Kolkata. The primary aim of ISEUSAM 2012 is to provide a platform to facilitate the discussion for a better understanding and management of uncertainty and risk, encompassing various aspects of safety and reliability of engineering systems. The conference received an overwhelming response from national as well as international scholars, experts and delegates from different parts of the world. Papers received from authors of several countries including Australia, Canada, China, Germany, Italy, UAE, UK and USA, besides India. More than two hundred authors have shown their interest in the symposium. The Proceedings presents ninety two high quality papers which address issues of uncertainty encompassing various fields of engineering, i.e. uncertainty analysis and modelling, structural reliability, geotechnical engineering, vibration control, earthquake engineering, environmental engineering, stochastic dynamics, transportation system, system identification and damage assessment, and infrastructure engineering.
Direct and to the point, this book from one of the field's leaders covers Brownian motion and stochastic calculus at the graduate level, and illustrates the use of that theory in various application domains, emphasizing business and economics. The mathematical development is narrowly focused and briskly paced, with many concrete calculations and a minimum of abstract notation. The applications discussed include: the role of reflected Brownian motion as a storage model, queuing model, or inventory model; optimal stopping problems for Brownian motion, including the influential McDonald-Siegel investment model; optimal control of Brownian motion via barrier policies, including optimal control of Brownian storage systems; and Brownian models of dynamic inference, also called Brownian learning models or Brownian filtering models.
Managing safety of diverse systems requires decision-making under uncertainties and risks. Such systems are typically characterized by spatio-temporal heterogeneities, inter-dependencies, externalities, endogenous risks, discontinuities, irreversibility, practically irreducible uncertainties, and rare events with catastrophic consequences. Traditional scientific approaches rely on data from real observations and experiments; yet no sufficient observations exist for new problems, and experiments are usually impossible. Therefore, science-based support for addressing such new class of problems needs to replace the traditional “deterministic predictions” analysis by new methods and tools for designing decisions that are robust against the involved uncertainties and risks. The new methods treat uncertainties explicitly by using “synthetic” information derived by integration of “hard” elements, including available data, results of possible experiments, and formal representations of scientific facts, with “soft” elements based on diverse representations of scenarios and opinions of public, stakeholders, and experts. The volume presents such effective new methods, and illustrates their applications in different problem areas, including engineering, economy, finance, agriculture, environment, and policy making.