Stochastic Methods for Modeling and Predicting Complex Dynamical Systems

Stochastic Methods for Modeling and Predicting Complex Dynamical Systems

Author: Nan Chen

Publisher: Springer Nature

Published: 2023-03-13

Total Pages: 208

ISBN-13: 3031222490

DOWNLOAD EBOOK

This book enables readers to understand, model, and predict complex dynamical systems using new methods with stochastic tools. The author presents a unique combination of qualitative and quantitative modeling skills, novel efficient computational methods, rigorous mathematical theory, as well as physical intuitions and thinking. An emphasis is placed on the balance between computational efficiency and modeling accuracy, providing readers with ideas to build useful models in practice. Successful modeling of complex systems requires a comprehensive use of qualitative and quantitative modeling approaches, novel efficient computational methods, physical intuitions and thinking, as well as rigorous mathematical theories. As such, mathematical tools for understanding, modeling, and predicting complex dynamical systems using various suitable stochastic tools are presented. Both theoretical and numerical approaches are included, allowing readers to choose suitable methods in different practical situations. The author provides practical examples and motivations when introducing various mathematical and stochastic tools and merges mathematics, statistics, information theory, computational science, and data science. In addition, the author discusses how to choose and apply suitable mathematical tools to several disciplines including pure and applied mathematics, physics, engineering, neural science, material science, climate and atmosphere, ocean science, and many others. Readers will not only learn detailed techniques for stochastic modeling and prediction, but will develop their intuition as well. Important topics in modeling and prediction including extreme events, high-dimensional systems, and multiscale features are discussed.


An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling

Author: Howard M. Taylor

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 410

ISBN-13: 1483269272

DOWNLOAD EBOOK

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.


Introduction to Modeling and Analysis of Stochastic Systems

Introduction to Modeling and Analysis of Stochastic Systems

Author: V. G. Kulkarni

Publisher: Springer

Published: 2012-12-27

Total Pages: 313

ISBN-13: 9781461427353

DOWNLOAD EBOOK

This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.


Stochastic Climate Models

Stochastic Climate Models

Author: Peter Imkeller

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 413

ISBN-13: 3034882874

DOWNLOAD EBOOK

A collection of articles written by mathematicians and physicists, designed to describe the state of the art in climate models with stochastic input. Mathematicians will benefit from a survey of simple models, while physicists will encounter mathematically relevant techniques at work.


Predictability of Complex Dynamical Systems

Predictability of Complex Dynamical Systems

Author: Yurii A. Kravtsov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 233

ISBN-13: 3642802540

DOWNLOAD EBOOK

This is a book book for researchers and practitioners interested in modeling, prediction and forecasting of natural systems based on nonlinear dynamics. It is a practical guide to data analysis and to the development of algorithms, especially for complex systems. Topics such as the characterization of nonlinear correlations in data as dynamical systems, reconstruction of dynamical models from data, nonlinear noise reduction and the limits of predicatability are discussed. The chapters are written by leading experts and consider practical problems such as signal and time series analysis, biomedical data analysis, financial analysis, stochastic modeling, human evolution, and political modeling. The book includes new methods for nonlinear filtering of complex signals, new algorithms for signal classification, and the concept of the "Global Brain".


Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures

Author: George Deodatis

Publisher: CRC Press

Published: 2014-02-10

Total Pages: 1112

ISBN-13: 1315884887

DOWNLOAD EBOOK

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of str


Hydro-Environmental Analysis

Hydro-Environmental Analysis

Author: James L. Martin

Publisher: CRC Press

Published: 2013-12-04

Total Pages: 5742

ISBN-13: 1138000868

DOWNLOAD EBOOK

Focusing on fundamental principles, Hydro-Environmental Analysis: Freshwater Environments presents in-depth information about freshwater environments and how they are influenced by regulation. It provides a holistic approach, exploring the factors that impact water quality and quantity, and the regulations, policy and management methods that are necessary to maintain this vital resource. It offers a historical viewpoint as well as an overview and foundation of the physical, chemical, and biological characteristics affecting the management of freshwater environments. The book concentrates on broad and general concepts, providing an interdisciplinary foundation. The author covers the methods of measurement and classification; chemical, physical, and biological characteristics; indicators of ecological health; and management and restoration. He also considers common indicators of environmental health; characteristics and operations of regulatory control structures; applicable laws and regulations; and restoration methods. The text delves into rivers and streams in the first half and lakes and reservoirs in the second half. Each section centers on the characteristics of those systems and methods of classification, and then moves on to discuss the physical, chemical, and biological characteristics of each. In the section on lakes and reservoirs, it examines the characteristics and operations of regulatory structures, and presents the methods commonly used to assess the environmental health or integrity of these water bodies. It also introduces considerations for restoration, and presents two unique aquatic environments: wetlands and reservoir tailwaters. Written from an engineering perspective, the book is an ideal introduction to the aquatic and limnological sciences for students of environmental science, as well as students of environmental engineering. It also serves as a reference for engineers and scientists involved in the management, regulation, or restoration of freshwater environments.


Systems Biology

Systems Biology

Author: Jinzhi Lei

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9783030730345

DOWNLOAD EBOOK

This book discusses the mathematical simulation of biological systems, with a focus on the modeling of gene expression, gene regulatory networks and stem cell regeneration. The diffusion of morphogens is addressed by introducing various reaction-diffusion equations based on different hypotheses concerning the process of morphogen gradient formation. The robustness of steady-state gradients is also covered through boundary value problems. The introduction gives an overview of the relevant biological concepts (cells, DNA, organism development) and provides the requisite mathematical preliminaries on continuous dynamics and stochastic modeling. A basic understanding of calculus is assumed. The techniques described in this book encompass a wide range of mechanisms, from molecular behavior to population dynamics, and the inclusion of recent developments in the literature together with first-hand results make it an ideal reference for both new students and experienced researchers in the field of systems biology and applied mathematics.


Mathematical Modeling of Earth's Dynamical Systems

Mathematical Modeling of Earth's Dynamical Systems

Author: Rudy Slingerland

Publisher: Princeton University Press

Published: 2011-03-28

Total Pages: 246

ISBN-13: 1400839114

DOWNLOAD EBOOK

A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html


Predictive Approaches to Control of Complex Systems

Predictive Approaches to Control of Complex Systems

Author: Gorazd Karer

Publisher: Springer

Published: 2012-09-20

Total Pages: 261

ISBN-13: 3642339476

DOWNLOAD EBOOK

A predictive control algorithm uses a model of the controlled system to predict the system behavior for various input scenarios and determines the most appropriate inputs accordingly. Predictive controllers are suitable for a wide range of systems; therefore, their advantages are especially evident when dealing with relatively complex systems, such as nonlinear, constrained, hybrid, multivariate systems etc. However, designing a predictive control strategy for a complex system is generally a difficult task, because all relevant dynamical phenomena have to be considered. Establishing a suitable model of the system is an essential part of predictive control design. Classic modeling and identification approaches based on linear-systems theory are generally inappropriate for complex systems; hence, models that are able to appropriately consider complex dynamical properties have to be employed in a predictive control algorithm. This book first introduces some modeling frameworks, which can encompass the most frequently encountered complex dynamical phenomena and are practically applicable in the proposed predictive control approaches. Furthermore, unsupervised learning methods that can be used for complex-system identification are treated. Finally, several useful predictive control algorithms for complex systems are proposed and their particular advantages and drawbacks are discussed. The presented modeling, identification and control approaches are complemented by illustrative examples. The book is aimed towards researches and postgraduate students interested in modeling, identification and control, as well as towards control engineers needing practically usable advanced control methods for complex systems.