Stochastic Geometry and its Applications

Stochastic Geometry and its Applications

Author: Dietrich Stoyan

Publisher: Wiley

Published: 2009-03-16

Total Pages: 458

ISBN-13: 9780470743645

DOWNLOAD EBOOK

The Wiley Paperback Series makes valuable content more accessible to a new generation of statisticians, mathematicians and scientists. Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The book deals with the following topics: point processes random sets random measures random shapes fibre and surface processes tessellations stereological methods. This book has served as the key reference in its field for over 20 years and is regarded as the best treatment of the subject of stochastic geometry, both as an subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right.


Stochastic and Integral Geometry

Stochastic and Integral Geometry

Author: Rolf Schneider

Publisher: Springer Science & Business Media

Published: 2008-09-08

Total Pages: 692

ISBN-13: 354078859X

DOWNLOAD EBOOK

Stochastic geometry deals with models for random geometric structures. Its early beginnings are found in playful geometric probability questions, and it has vigorously developed during recent decades, when an increasing number of real-world applications in various sciences required solid mathematical foundations. Integral geometry studies geometric mean values with respect to invariant measures and is, therefore, the appropriate tool for the investigation of random geometric structures that exhibit invariance under translations or motions. Stochastic and Integral Geometry provides the mathematically oriented reader with a rigorous and detailed introduction to the basic stationary models used in stochastic geometry – random sets, point processes, random mosaics – and to the integral geometry that is needed for their investigation. The interplay between both disciplines is demonstrated by various fundamental results. A chapter on selected problems about geometric probabilities and an outlook to non-stationary models are included, and much additional information is given in the section notes.


Stochastic Geometry

Stochastic Geometry

Author: David Coupier

Publisher: Springer

Published: 2019-04-09

Total Pages: 240

ISBN-13: 3030135470

DOWNLOAD EBOOK

This volume offers a unique and accessible overview of the most active fields in Stochastic Geometry, up to the frontiers of recent research. Since 2014, the yearly meeting of the French research structure GDR GeoSto has been preceded by two introductory courses. This book contains five of these introductory lectures. The first chapter is a historically motivated introduction to Stochastic Geometry which relates four classical problems (the Buffon needle problem, the Bertrand paradox, the Sylvester four-point problem and the bicycle wheel problem) to current topics. The remaining chapters give an application motivated introduction to contemporary Stochastic Geometry, each one devoted to a particular branch of the subject: understanding spatial point patterns through intensity and conditional intensities; stochastic methods for image analysis; random fields and scale invariance; and the theory of Gibbs point processes. Exposing readers to a rich theory, this book will encourage further exploration of the subject and its wide applications.


Stochastic Geometry

Stochastic Geometry

Author: Wilfrid S. Kendall

Publisher: Routledge

Published: 2019-06-10

Total Pages: 424

ISBN-13: 1351413716

DOWNLOAD EBOOK

Stochastic geometry involves the study of random geometric structures, and blends geometric, probabilistic, and statistical methods to provide powerful techniques for modeling and analysis. Recent developments in computational statistical analysis, particularly Markov chain Monte Carlo, have enormously extended the range of feasible applications. Stochastic Geometry: Likelihood and Computation provides a coordinated collection of chapters on important aspects of the rapidly developing field of stochastic geometry, including: o a "crash-course" introduction to key stochastic geometry themes o considerations of geometric sampling bias issues o tesselations o shape o random sets o image analysis o spectacular advances in likelihood-based inference now available to stochastic geometry through the techniques of Markov chain Monte Carlo


Stochastic Geometry for Wireless Networks

Stochastic Geometry for Wireless Networks

Author: Martin Haenggi

Publisher: Cambridge University Press

Published: 2013

Total Pages: 301

ISBN-13: 1107014697

DOWNLOAD EBOOK

Analyse wireless network performance and improve design choices for future architectures and protocols with this rigorous introduction to stochastic geometry.


Introduction To Stochastic Processes

Introduction To Stochastic Processes

Author: Mu-fa Chen

Publisher: World Scientific

Published: 2021-05-25

Total Pages: 245

ISBN-13: 9814740322

DOWNLOAD EBOOK

The objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts — Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying.In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains.In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman-Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn-Minkowski inequality in convex geometry.This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis.


Stochastic Analysis for Poisson Point Processes

Stochastic Analysis for Poisson Point Processes

Author: Giovanni Peccati

Publisher: Springer

Published: 2016-07-07

Total Pages: 359

ISBN-13: 3319052330

DOWNLOAD EBOOK

Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolving field, offering a rigorous yet lively presentation of its many facets.


Stochastic Geometry and Wireless Networks

Stochastic Geometry and Wireless Networks

Author: François Baccelli

Publisher: Now Publishers Inc

Published: 2009

Total Pages: 224

ISBN-13: 160198264X

DOWNLOAD EBOOK

This volume bears on wireless network modeling and performance analysis. The aim is to show how stochastic geometry can be used in a more or less systematic way to analyze the phenomena that arise in this context. It first focuses on medium access control mechanisms used in ad hoc networks and in cellular networks. It then discusses the use of stochastic geometry for the quantitative analysis of routing algorithms in mobile ad hoc networks. The appendix also contains a concise summary of wireless communication principles and of the network architectures considered in the two volumes.


Stochastic Geometry and Its Applications

Stochastic Geometry and Its Applications

Author: Sung Nok Chiu

Publisher: John Wiley & Sons

Published: 2013-06-27

Total Pages: 561

ISBN-13: 1118658256

DOWNLOAD EBOOK

An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right. This edition: Presents a wealth of models for spatial patterns and related statistical methods. Provides a great survey of the modern theory of random tessellations, including many new models that became tractable only in the last few years. Includes new sections on random networks and random graphs to review the recent ever growing interest in these areas. Provides an excellent introduction to theory and modelling of point processes, which covers some very latest developments. Illustrate the forefront theory of random sets, with many applications. Adds new results to the discussion of fibre and surface processes. Offers an updated collection of useful stereological methods. Includes 700 new references. Is written in an accessible style enabling non-mathematicians to benefit from this book. Provides a companion website hosting information on recent developments in the field www.wiley.com/go/cskm Stochastic Geometry and its Applications is ideally suited for researchers in physics, materials science, biology and ecological sciences as well as mathematicians and statisticians. It should also serve as a valuable introduction to the subject for students of mathematics and statistics.