Stochastic Dynamics Of Complex Systems: From Glasses To Evolution

Stochastic Dynamics Of Complex Systems: From Glasses To Evolution

Author: Henrik Jeldtoft Jensen

Publisher: World Scientific Publishing Company

Published: 2013-02-20

Total Pages: 300

ISBN-13: 1848169957

DOWNLOAD EBOOK

Dynamical evolution over long time scales is a prominent feature of all the systems we intuitively think of as complex — for example, ecosystems, the brain or the economy. In physics, the term ageing is used for this type of slow change, occurring over time scales much longer than the patience, or indeed the lifetime, of the observer. The main focus of this book is on the stochastic processes which cause ageing, and the surprising fact that the ageing dynamics of systems which are very different at the microscopic level can be treated in similar ways.The first part of this book provides the necessary mathematical and computational tools and the second part describes the intuition needed to deal with these systems. Some of the first few chapters have been covered in several other books, but the emphasis and selection of the topics reflect both the authors' interests and the overall theme of the book. The second part contains an introduction to the scientific literature and deals in some detail with the description of complex phenomena of a physical and biological nature, for example, disordered magnetic materials, superconductors and glasses, models of co-evolution in ecosystems and even of ant behaviour. These heterogeneous topics are all dealt with in detail using similar analytical techniques.This book emphasizes the unity of complex dynamics and provides the tools needed to treat a large number of complex systems of current interest. The ideas and the approach to complex dynamics it presents have not appeared in book form until now./a


Dynamics Of Complex Systems

Dynamics Of Complex Systems

Author: Yaneer Bar-yam

Publisher: CRC Press

Published: 2019-03-04

Total Pages: 866

ISBN-13: 0429717598

DOWNLOAD EBOOK

This book aims to develop models and modeling techniques that are useful when applied to all complex systems. It adopts both analytic tools and computer simulation. The book is intended for students and researchers with a variety of backgrounds.


Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems

Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems

Author: M. Reza Rahimi Tabar

Publisher: Springer

Published: 2019-07-04

Total Pages: 290

ISBN-13: 3030184722

DOWNLOAD EBOOK

This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.


Stochastic Transport in Complex Systems

Stochastic Transport in Complex Systems

Author: Andreas Schadschneider

Publisher: Elsevier

Published: 2010-10-01

Total Pages: 585

ISBN-13: 0080560520

DOWNLOAD EBOOK

The first part of the book provides a pedagogical introduction to the physics of complex systems driven far from equilibrium. In this part we discuss the basic concepts and theoretical techniques which are commonly used to study classical stochastic transport in systems of interacting driven particles. The analytical techniques include mean-field theories, matrix product ansatz, renormalization group, etc. and the numerical methods are mostly based on computer simulations. In the second part of the book these concepts and techniques are applied not only to vehicular traffic but also to transport and traffic-like phenomena in living systems ranging from collective movements of social insects (for example, ants) on trails to intracellular molecular motor transport. These demonstrate the conceptual unity of the fundamental principles underlying the apparent diversity of the systems and the utility of the theoretical toolbox of non-equilibrium statistical mechanics in interdisciplinary research far beyond the traditional disciplinary boundaries of physics. - Leading industry experts provide a broad overview of the interdisciplinary nature of physics - Presents unified descriptions of intracellular, ant, and vehicular traffic from a physics point of view - Applies theoretical methods in practical everyday situations - Reference and guide for physicists, engineers and graduate students


Chaos

Chaos

Author: Angelo Vulpiani

Publisher: World Scientific

Published: 2010

Total Pages: 482

ISBN-13: 9814277665

DOWNLOAD EBOOK

Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.


Stochastic Dynamical Systems

Stochastic Dynamical Systems

Author: Josef Honerkamp

Publisher: John Wiley & Sons

Published: 1996-12-17

Total Pages: 558

ISBN-13: 9780471188346

DOWNLOAD EBOOK

This unique volume introduces the reader to the mathematical language for complex systems and is ideal for students who are starting out in the study of stochastical dynamical systems. Unlike other books in the field it covers a broad array of stochastic and statistical methods.


A Concise Introduction to the Statistical Physics of Complex Systems

A Concise Introduction to the Statistical Physics of Complex Systems

Author: Eric Bertin

Publisher: Springer Science & Business Media

Published: 2011-09-28

Total Pages: 85

ISBN-13: 3642239234

DOWNLOAD EBOOK

This concise primer (based on lectures given at summer schools on complex systems and on a masters degree course in complex systems modeling) will provide graduate students and newcomers to the field with the basic knowledge of the concepts and methods of statistical physics and its potential for application to interdisciplinary topics. Indeed, in recent years, statistical physics has begun to attract the interest of a broad community of researchers in the field of complex system sciences, ranging from biology to the social sciences, economics and computer science. More generally, a growing number of graduate students and researchers feel the need to learn some basic concepts and questions originating in other disciplines without necessarily having to master all of the corresponding technicalities and jargon. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting ‘entities’, and on the other to predict the macroscopic (or collective) behavior of the system considered from the microscopic laws ruling the dynamics of the individual ‘entities’. These two goals are, to some extent, also shared by what is nowadays called ‘complex systems science’ and for these reasons, systems studied in the framework of statistical physics may be considered as among the simplest examples of complex systems—allowing in addition a rather well developed mathematical treatment.


Stochastic Dynamics for Systems Biology

Stochastic Dynamics for Systems Biology

Author: Christian Mazza

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 274

ISBN-13: 1466514949

DOWNLOAD EBOOK

Stochastic Dynamics for Systems Biology is one of the first books to provide a systematic study of the many stochastic models used in systems biology. The book shows how the mathematical models are used as technical tools for simulating biological processes and how the models lead to conceptual insights on the functioning of the cellular processing


Modeling Complex Living Systems

Modeling Complex Living Systems

Author: N. Bellomo

Publisher: Springer Science & Business Media

Published: 2008

Total Pages: 229

ISBN-13: 0817645101

DOWNLOAD EBOOK

Develops different mathematical methods and tools to model living systems. This book presents material that can be used in such real-world applications as immunology, transportation engineering, and economics. It is of interest to those involved in modeling complex social systems and living matter in general.


Foundations of Complex-system Theories

Foundations of Complex-system Theories

Author: Sunny Y. Auyang

Publisher: Cambridge University Press

Published: 1998

Total Pages: 422

ISBN-13: 9780521778268

DOWNLOAD EBOOK

Analyzes approaches to the study of complexity in the physical, biological, and social sciences.