Make learning relevant with STEM essential questions This engaging, teacher-friendly guide helps teachers quickly and confidently infuse STEM concepts into all content areas. Real-world vignettes, sample lesson templates, discussion questions and immediately applicable action steps help you seamlessly promote college and career ready skills. Use this inspiring guide to: Deepen all content areas, including English/ Language Arts Promote the 4Cs: communication, collaboration, critical thinking, and creativity Require students to take risks to solve problems Differentiate instruction and scaffold support Expand students’ specific measurable capabilities Incorporate design skills into the curricula Save valuable time and confidently develop standards-aligned STEM projects in all content areas!
Bolstered by new standards and new initiatives to promote STEM education, engineering is making its way into the school curriculum. This comprehensive introduction will help elementary educators integrate engineering into their classroom, school, or district in age-appropriate, inclusive, and engaging ways. Building on the work of a Museum of Science team that has spent 15 years developing elementary engineering curricula, this book outlines how engineering can be integrated into a broader STEM curriculum, details its pedagogical benefits to students, and includes classroom examples to help educators tailor instruction to engage diverse students. Featuring vignettes, case studies, videos, research results, and assessments, this resource will help readers visualize high-quality elementary engineering and understand the theoretical principles in context. Book Features: Frameworks to help teachers create curricula and structure activities. A focus on engaging the diversity of learners in today’s classrooms. Experiences from the nation’s leading elementary education curriculum that has reached 13.3 million children and 165,000 educators. Go to eie.org/book for videos, assessment tools, reproducibles, and other instructional supports that enliven the text.
Want to know how to implement authentic STEM teaching and learning into your classroom? STEM Lesson Essentials provides all the tools and strategies you'll need to design integrated, interdisciplinary STEM lessons and units that are relevant and exciting to your students. With clear definitions of both STEM and STEM literacy, the authors argue that STEM in itself is not a curriculum, but rather a way of organizing and delivering instruction by weaving the four disciplines together in intentional ways. Rather than adding two new subjects to the curriculum, the engineering and technology practices can instead be blended into existing math and science lessons in ways that engage students and help them master 21st century skills.
STEM Education in the Primary School introduces pre-service teachers to the theory, skills and practice of teaching STEM through a project-based learning approach. Science, technology, engineering and mathematics are presented as professions, mindsets and practices, and each element of STEM is integrated with the Australian Curriculum through a school garden project case study. Popular STEM topic areas, such as health, shelter and space, are explored using tested and age-appropriate project examples that illustrate the translation of STEM ideas to classroom practice. This textbook connects current research in STEM education to teaching practice through detailed discussion of topics including assessment, learning spaces, community and STEM futures. Encouraging readers to consolidate their knowledge, the text is supported by short-answer and reflection questions, information boxes and real-world scenarios. Suggested activities and downloadable templates in the VitalSource enhanced eBook provide guidance for readers when implementing projects and practices in their classroom.
This textbook offers practical guidelines for integrating science, technology, engineering, and mathematics into the elementary classroom in the context of addressing real-world problems, and cultivating in students high-level thinking and problem-solving skills. Designed to equip teachers and future teachers with tools to create and implement standards-based STEM curriculum and cognitively demanding tasks, author Sherri Cianca offers hands-on, easily implemented strategies that foster student reasoning, autonomy, and humanity. This fresh approach to STEM teaching empowers teachers (preservice and inservice) and other leaders to better understand the standards and better design effective instructional practices. The chapters work together to advance teachers’ abilities to achieve mastery-level understanding of content, translate standards into student-friendly curriculum, and create a robust learning environment. Each chapter contains "probes" to uncover incomplete and inaccurate conceptions and to focus attention on key learning elements. Chapter summaries and "Reflect and Apply" sections reinforce professional development, and appendices expand on chapter content and provide rich examples of STEM units, curriculum, and assessment criteria. Dr. Cianca's vision is that teachers serve as well-equipped change agents that will empower their students to transfer STEM learning into applications that will impart a positive impact on our future world.
"It's time to ramp up science, technology, engineering, and mathematics (STEM) in the K-2 classroom. Benefits of early learning in science and math include the following: (a) It leads to social-emotional development and fewer challenging behaviors; (b) it supports the development of a mind-set that includes curiosity, communication, persistence, and problem solving; (c) it contributes to gains in other subjects by supporting literacy and language development and better reading comprehension and writing skills; and (d) it includes subjects that can engage students from varying backgrounds, including English language learners. But delivering quality early STEM information requires expertise on the part of the teacher in scaffolding the lessons. Research shows that quality STEM teaching and learning is critical in early childhood education; however, it is also points out that the teachers themselves need support as they learn how to facilitate STEM learning in their classrooms. Professional learning experiences are needed to cover how teachers can make connections between STEM topics and the everyday activities they are already doing with their students. STEM teaching and learning does not need to become one more add-on to the K-2 classroom. STEM learning should be a natural extension to what teachers are already teaching. It was with this in mind that we set out to write this book. We wanted to focus on how to naturally integrate STEM learning into K-2 classroom experiences"--
This compendium is a collection of STEM-related articles from the journal Science and Children. It provides a variety of science, technology, engineering, and mathematics content and classroom activities for PreK-5 science teachers. --
How do you create effective STEM classrooms that energize students, help them grow into creative thinkers and collaborators, and prepare them for their futures? This practical book from expert Anne Jolly has all the answers and tools you need to get started or enhance your current program. Based on the author’s popular MiddleWeb blog of the same name, STEM by Design reveals the secrets to successful lessons in which students use science, math, and technology to solve real-world engineering design problems. You’ll learn how to: Select and adapt quality existing STEM lessons that present authentic problems, allow for creative approaches, and engage students in meaningful teamwork; Create your own student-centered STEM lessons based on the Engineering Design Process; Assess students’ understanding of basic STEM concepts, their problem-solving abilities, and their level of engagement with the material; Teach STEM in after-school programs to further build on concepts covered in class; Empower girls to aspire to careers in STEM and break down the barriers of gender bias; Tap into STEM's project-based learning style to attract and engage all students. Throughout this user-friendly book, you’ll find design tools such as checklists, activities, and assessments to aid you in developing or adapting STEM lessons. These tools, as well as additional teacher resources, are also available as free downloads from the book’s website, http://www.stem-by-design.com.
The second decade of the 21st century has seen governments and industry globally intensify their focus on the role of science, technology, engineering and mathematics (STEM) as a vehicle for future economic prosperity. Economic opportunities for new industries that are emerging from technological advances, such as those emerging from the field of artificial intelligence also require greater capabilities in science, mathematics, engineering and technologies. In response to such opportunities and challenges, government policies that position STEM as a critical driver of economic prosperity have burgeoned in recent years. Common to all these policies are consistent messages that STEM related industries are the key to future international competitiveness, productivity and economic prosperity. This book presents a contemporary focus on significant issues in STEM teaching, learning and research that are valuable in preparing students for a digital 21st century. The book chapters cover a wide spectrum of issues and topics using a wealth of research methodologies and methods ranging from STEM definitions to virtual reality in the classroom; multiplicative thinking; STEM in pre-school, primary, secondary and tertiary education, opportunities and obstacles in STEM; inquiry-based learning in statistics; values in STEM education and building academic leadership in STEM. The book is an important representation of some of the work currently being done by research-active academics. It will appeal to academics, researchers, teacher educators, educational administrators, teachers and anyone interested in contemporary STEM Education related research in a rapidly changing globally interconnected world. Contributors are: Natalie Banks, Anastasios (Tasos) Barkatsas, Amanda Berry, Lisa Borgerding, Nicky Carr, Io Keong Cheong, Grant Cooper, Jan van Driel, Jennifer Earle, Susan Fraser, Noleine Fitzallen, Tricia Forrester, Helen Georgiou, Andrew Gilbert, Ineke Henze, Linda Hobbs, Sarah Howard, Sylvia Sao Leng Ieong, Chunlian Jiang, Kathy Jordan, Belinda Kennedy, Zsolt Lavicza, Tricia Mclaughlin, Wendy Nielsen, Shalveena Prasad, Theodosia Prodromou, Wee Tiong Seah, Dianne Siemon, Li Ping Thong, Tessa E. Vossen and Marc J. de Vries.
"This reference brings together an impressive array of research on the development of Science, Technology, Engineering, and Mathematics curricula at all educational levels"--Provided by publisher.