The second volume in the Stem Cells series concentrates on the mechanisms of stem cell regeneration in the adult organism with a view towards understanding how lost tissue can be replaced during adulthood and aging. The second focus of this volume is on stem cell identification and manipulation, including applications in basic research, medicine, and industry. The book closes with an outlook on generalized approaches that can be used to solve legislative and ethical challenges.
"Provides an understanding of the basic concepts in stem cell biology and addresses the politics, ethics, and challenges currently facing the field"--From publisher description.
The second edition of Stem Cells: Scientific Facts and Fiction provides the non-stem cell expert with an understandable review of the history, current state of affairs, and facts and fiction of the promises of stem cells. Building on success of its award-winning preceding edition, the second edition features new chapters on embryonic and iPS cells and stem cells in veterinary science and medicine. It contains major revisions on cancer stem cells to include new culture models, additional interviews with leaders in progenitor cells, engineered eye tissue, and xeno organs from stem cells, as well as new information on "organs on chips" and adult progenitor cells. In the past decades our understanding of stem cell biology has increased tremendously. Many types of stem cells have been discovered in tissues that everyone presumed were unable to regenerate in adults, the heart and the brain in particular. There is vast interest in stem cells from biologists and clinicians who see the potential for regenerative medicine and future treatments for chronic diseases like Parkinson's, diabetes, and spinal cord lesions, based on the use of stem cells; and from entrepreneurs in biotechnology who expect new commercial applications ranging from drug discovery to transplantation therapies. - Explains in straightforward, non-specialist language the basic biology of stem cells and their applications in modern medicine and future therapy - Includes extensive coverage of adult and embryonic stem cells both historically and in contemporary practice - Richly illustrated to assist in understanding how research is done and the current hurdles to clinical practice
Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.
The first volume of Stem Cells deals with the fundamental principles that govern embryonic and somatic stem cell biology. Historically, the identification and characterization of such pathways and general rules of stemness occurred during embryonic development and Volume I reflects this with topics spanning cell cycle regulation, epigenetics, and asymmetric cell division in a number of organ systems from planarian to human. Three specific sections discuss i) Basic Stem Cell Biology, ii) Tissue Formation During Development, and iii) Model Organisms with particular emphasis on those more relevant for biomedical research and, thus, leading to the topics addressed in Volume II.
Stem Cell Therapy for Diabetes, one of the latest installments of the Stem Cell Biology and Regenerative Medicine series, reviews the three main approaches for generation of sufficient numbers of insulin-producing cells for restoration of an adequate beta-cell mass: beta-cell expansion, stem-cell differentiation, and nuclear reprogramming. Adeptly collecting the research of the leading scientists in the field, Stem Cell Therapy for Diabetes compares the merits of employing autologous versus banked allogeneic cell sources for generation of surrogate beta cells, and addresses tissue engineering and ways for cell protection from recurring autoimmunity and graft rejection. Stem Cell Therapy for Diabetes provides essential reading for those especially interested in tracking the progress in applying of one of the most exciting new developments in bio-medicine towards a cure for diabetes.
Advances in Stem Cell Research discusses recent advances in stem cell science, including therapeutic applications. This volume covers such topics as biomanufacturing iPS cells for therapeutic applications, techniques for controlling stem cell fate decisions, as well as current basic research in such areas as germ line stem cells, genomics and proteomics in stem cell research. It is a useful book for biology and clinical scientists, especially young investigators and stem cell biology students who are newly entering the world of stem cells research. The editors hope that the new knowledge and research outlined in this book will help contribute to new therapies for a wide variety of diseases that presently afflict humanity.
Advances in Tissue Engineering is a unique volume and the first of its kind to bring together leading names in the field of tissue engineering and stem cell research. A relatively young science, tissue engineering can be seen in both scientific and sociological contexts and successes in the field are now leading to clinical reality. This book attempts to define the path from basic science to practical application. A contribution from the UK Stem Cell Bank and opinions of venture capitalists offer a variety of viewpoints, and exciting new areas of stem cell biology are highlighted. With over fifty stellar contributors, this book presents the most up-to-date information in this very topical and exciting field./a
Stem cells are relatively undifferentiated cells which are the permanent lineage ancestor cells of tissues. Newly developed molecular biological techniques and probes have made possible dramatic advances in our ability to study the lineage development of stem cells. A major impetus to develop these techniques has been to identify specific stem cells for gene therapy purposes. The role that stem cells play in the development of cancer is also an important area. This book provides up-to-date reviews on a wide variety of stem cell systems by world experts. Chapters range from descriptions of the current knowledge of the biology of stem cells, to current molecular biological approaches and clinical implications. Oncologists and cell biologists will find this book of particular interest. It will also be usefule to radiobiologist, biotechnologists, and gene therapists. - Provides reviews of stem cell systems by world experts - Covers stem cell biology in plants, invertebrates, and mammals - Presents clinical implications of stem cell differentiation