Stem Cells

Stem Cells

Author: Gregory R. Bock

Publisher: John Wiley & Sons

Published: 2005-04-22

Total Pages: 234

ISBN-13: 9780470091432

DOWNLOAD EBOOK

Understanding stem cells at the molecular level is essential to understanding their behaviour in a physiological context. This volume in our acclaimed Novartis Foundation series features animated discussion from the world’s experts in this topic on the important ethical issues that are raised by research on stem cells. They review the various regulatory regimes, which apply in different countries – a key factor in determining where future stem cell research is carried out. Potential clinical applications covered in the book include the production of cardiomyocytes to replace damaged heart tissue, the production of insulin-producing cells for patients with diabetes, and the generation of neurons for the treatment of patients with Parkinson’s disease or spinal cord injury. Particular attention is paid to the factors that maintain stem cells in a pluripotent state or which drive them to create differentiated and lineage-committed cells in vitro and in vivo. Nuclear reprogramming, the process by which a nucleus acquires developmental potential, is covered here as well. It is relevant to stem cell research generally, and also to research on the cloning of animals by nuclear transfer. This book is an essential purchase for all those engaged in stem cell research, whether in the laboratory, the clinic or the regulatory authorities. From the reviews: "...this book provides: a comprehensive overview of current issues in stem cell research, with contributions from leading figures..." —BRITISH SOCIETY OF CELL BIOLOGY


Nuclear Reprogramming and Stem Cells

Nuclear Reprogramming and Stem Cells

Author: Justin Ainscough

Publisher: Springer Science & Business Media

Published: 2011-09-02

Total Pages: 340

ISBN-13: 161779225X

DOWNLOAD EBOOK

Research into the field of stem cell biology has developed exponentially over recent years, and is beginning to offer significant promise for unravelling the molecular basis of a multitude of disease states. Importantly, in addition to offering the opportunity to delve deeply into the mechanisms that drive disease aetiology the research is realistically opening the doors for development of targeted and personalized therapeutic applications that many considered, until recently, to be nothing more that a far fetched dream. This volume provides a timely glimpse into the methods that have been developed to instigate, and the mechanisms that have been identified to drive, the process of nuclear reprogramming, chronicling how the field has developed over the last 50-60 years. Since the early 1950s a small number of notable experiments have provided significant impetus to the field, primarily the demonstration of reprogramming ability, first by the complex cytoplasmic milieu that constitutes the amphibian egg, then that of the mammalian egg, and finally that of the mammalian embryonic stem cell. Most recently, the demonstration that a limited pool of defined molecules is capable of reprogramming a multitude of cell types has provided massive impetus and facilitated transition towards realistic therapeutic application. We have therefore reproduced some of the key articles that elegantly document these dramatic stages of development of the field in an inclusive appendix to the book, for the benefit of readers keen to investigate the history of how the field of stem cell biology has evolved. Owing to the ever broadening nature of this field, and the incredible rate at which it is evolving, the main content of this volume focuses on areas that have shown significant movement in recent years, are most likely to translate into personalized therapeutic application, and thus provide greatest potential for significant impact on human health in the not too distant future. We recognize that research into many other disease states and cell types are all equally worthy of discussion. We would therefore like to acknowledge those researchers involved whose work we have not been able to include in this volume. Nuclear Reprogramming and Stem Cells will serve as a valuable resource for all researchers in the field of stem cell biology, including those just setting out on their career path as well as those already established in the field.


Cell Reprogramming

Cell Reprogramming

Author: Paul J. Verma

Publisher: Humana

Published: 2015-12-02

Total Pages: 0

ISBN-13: 9781493928477

DOWNLOAD EBOOK

This volume provides an understanding of the factors involved in nuclear reprogramming, which is essential for the success of reprogramming. The book is aimed at reprogramming differentiated cells and germ line transmission of pluripotent stem cells and features chapters that deal with reprogramming-related issues such as analysis of mitochondrial DNA in reprogrammed cells and the isolation of reprogramming intermediates; alternative methods for nuclear transfer; the production of germ-line chimeras from embryonic stem cells and induced pluripotent stem cells; and neonatal care and management of somatic cell nuclear transfer derived offspring. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Cell Reprogramming: Methods and Protocols


Stem Cells in Reproductive Medicine

Stem Cells in Reproductive Medicine

Author: Carlos Simón

Publisher: Cambridge University Press

Published: 2013-07-04

Total Pages: 199

ISBN-13: 1107034477

DOWNLOAD EBOOK

Stem cell science has the potential to impact human reproductive medicine significantly - cutting edge technologies allow the production and regeneration of viable gametes from human stem cells offering potential to preciously infertile patients. Written by leading experts in the field Stem Cells in Reproductive Medicine brings together chapters on the genetics and epigenetics of both the male and female gametes as well as advice on the production and regeneration of gene cells in men and women, trophoblasts and endometrium from human embryonic and adult stem cells. Although focussing mainly on the practical elements of the use of stem cells in reproductive medicine, the book also contains a section on new developments in stem cell research. The book is essential reading for reproductive medicine clinicians, gynecologists and embryologists who want to keep abreast of practical developments in this rapidly developing field.


Regulatory Networks in Stem Cells

Regulatory Networks in Stem Cells

Author: Vinagolu K. Rajasekhar

Publisher: Springer Science & Business Media

Published: 2009-03-04

Total Pages: 590

ISBN-13: 1603272275

DOWNLOAD EBOOK

Stem cells appear to be fundamental cellular units associated with the origin of multicellular organisms and have evolved to function in safeguarding the cellular homeostasis in organ t- sues. The characteristics of stem cells that distinguish them from other cells have been the fascinating subjects of stem cell research. The important properties of stem cells, such as ma- tenance of quiescence, self-renewal capacity, and differentiation potential, have propelled this exciting ?eld and presently form a common theme of research in developmental biology and medicine. The derivation of pluripotent embryonic stem cells, the prospective identi?cation of multipotent adult stem cells, and, more recently, the induced pluripotent stem cells (popularly called iPS) are important milestones in the arena of stem cell biology. Complex networks of transcription factors, different signaling molecules, and the interaction of genetic and epi- netic events constantly modulate stem cell behavior to evoke programming and reprogramming processes in normal tissue homeostasis during development. In any given cellular scenario, the regulatory networks can pose considerable complexity and yet exert an orderly control of stem cell differentiation during normal development. An aberration in these ?nely tuned processes during development usually results in a spectrum of diseases such as cancers and neurological disorders. Thisunderscorestheimminentneedforamorecompleteunderstandingofmolecular mechanisms underlying the regulatory circuitries required for stem cell maintenance. Overthepast3–5years,adiversegroupofbenchandphysicianscientistshaveprospectively enhanced our knowledge of stem cell biology. These studies are unveiling many unrecognized or previously unknown fundamentals of developmental biology.


Stem Cells And Regenerative Medicine

Stem Cells And Regenerative Medicine

Author: Walter C Low

Publisher: World Scientific

Published: 2008-05-06

Total Pages: 571

ISBN-13: 9814472581

DOWNLOAD EBOOK

Stem cells have the ability to differentiate into cells that are found throughout the body. This fundamental property of stem cells suggests that they can potentially be used to replace degenerative cells within the body, and regenerate the functional capacity of organ systems that have deteriorated because of disease or aging. This authoritative textbook provides an overview of the latest advances in the field of stem cell biology, spanning topics that include nuclear reprogramming, somatic cell cloning, and determinants of cell fate; embryonic stem cells for hematopoietic and pancreatic repair; adult stem cells for cardiovascular, neural, renal, and hepatic repair; and manufacturing of stem cells for clinical use.


Nuclear Transfer Protocols

Nuclear Transfer Protocols

Author: Paul J. Verma

Publisher: Springer Science & Business Media

Published: 2008-02-02

Total Pages: 684

ISBN-13: 1597451541

DOWNLOAD EBOOK

Nuclear Transfer Protocols: Cell Reprogramming and Transgenesis is a comprehensive review of nuclear transfer technology in vertebrates, aimed at reprogramming differentiated nuclei and effecting targeted gene transfer. The emphasis here is on providing readily reproducible techniques for the gene- tion of cloned embryos and animals in a number of key research and commercially important vertebrates. Additional chapters provide alternative cutting-edge methods for nuclear transfer, such as zona-free nuclear transfer and serial nuclear transfer. Of immense practical benefit are descriptions of procedures associated with cloning, such as in vitro maturation of oocytes, activation and culture of cloned embryos, maintenance of pregnancy, and neonatal care of clones. Nuclear Transfer Protocols: Cell Reprogramming and Transgenesis also provides an understanding of the factors involved in nuclear reprogramming, which is imperative for the success of cloning. A section dealing with such cloning-related issues as aging and normality of clones is also included making this an essential comprehensive handbook for research and commercial labo- tories involved in, or intending to work on, nuclear transfer. The volume will prove beneficial to molecular biologists, stem cell biologists, clinicians, biotechnologists, students, veterinarians, and animal care technicians involved with reprogramming, nuclear transfer, and transgenesis.


Control and Regulation of Stem Cells

Control and Regulation of Stem Cells

Author: Bruce Stillman

Publisher:

Published: 2008

Total Pages: 0

ISBN-13: 9780879698621

DOWNLOAD EBOOK

Based on presentations by world-renowned investigators at the 73rd annual Cold Spring Harbor Symposium on Quantitative Biology, this volume reviews the latest advances in research on the control and regulation of stem cells. The topics covered include nuclear reprogramming, regulation of stem cell self-renewal and differentiation, the stem cell niche, and signaling and gene regulation in stem cells. Studies of embryonic stem cells and adult stem cells are covered, along with research shedding light on the roles of these cells in regeneration and cancer.


Nuclear Reprogramming

Nuclear Reprogramming

Author: Steve Pells

Publisher: Springer Science & Business Media

Published: 2008-02-04

Total Pages: 337

ISBN-13: 1597450057

DOWNLOAD EBOOK

A wide-ranging collection of readily reproducible methods for performing nuclear reprogramming by nuclear transfer in several different species, by fusion through both chemical treatment and electrically shocking cells, and by in vivo treatment of cells with cell extracts. Several methods of monitoring nuclear reprogramming are also presented, including the use of transgenic markers, activation of telomerase as an ES-specific marker, light and electron microscopic observation of structural changes in the nucleus, and verification of surface marker expression and the differentiation potential of stem cells. Biochemical methods are provided for the examination of chromatin protein modifications, nucleosomal footprinting, transcription factor binding, and the study of DNA methylation changes both at the specific locus level and at the level of the whole nucleus.