This publication provides industry data on electric power, including generating capability, generation, fuel consumption, cost of fuels, and retail sales and revenue.
Today there is increasing pressure on the water infrastructure and although unsustainable water extraction and wastewater handling can continue for a while, at some point water needs to be managed in a way that is sustainable in the long-term. We need to handle water utilities “smarter”. New and effective tools and technologies are becoming available at an affordable cost and these technologies are steadily changing water infrastructure options. The quality and robustness of sensors are increasing rapidly and their reliability makes the automatic handling of critical processes viable. Online and real-time control means safer and more effective operation. The combination of better sensors and new water treatment technologies is a strong enabler for decentralised and diversified water treatment. Plants can be run with a minimum of personnel attendance. In the future, thousands of sensors in the water utility cycle will handle all the complexity in an effective way. Smart Water Utilities: Complexity Made Simple provides a framework for Smart Water Utilities based on an M-A-D (Measurement-Analysis-Decision). This enables the organisation and implementation of “Smart” in a water utility by providing an overview of supporting technologies and methods. The book presents an introduction to methods and tools, providing a perspective of what can and could be achieved. It provides a toolbox for all water challenges and is essential reading for the Water Utility Manager, Engineer and Director and for Consultants, Designers and Researchers.
CI/ASCE Standard 38-02 presents a credible system for classifying the quality of utility location information that is placed in design plans. The Standard addresses issues such as: how utility information can be obtained, what technologies are available to obtain that information; how that information can be conveyed to the information users; who should be responsible for typical collection and depiction tasks; what factors determine which utility quality level attribute to assign to data; and what the relative costs and benefits of the various quality levels are. Used as a reference or as part of a specification, the Standard will assist engineers, project and utility owners, and constructors in developing strategies to reduce risk by improving the reliability of information on existing subsurface utilities in a defined manner.
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
It is not news that each of us grows old. What is relatively new, however, is that the average age of the American population is increasing. More and better information is required to assess, plan for, and meet the needs of a graying population. The Aging Population in the Twenty-First Century examines social, economic, and demographic changes among the aged, as well as many health-related topics: health promotion and disease prevention; quality of life; health care system financing and use; and the quality of careâ€"especially long-term care. Recommendations for increasing and improving the data availableâ€"as well as for ensuring timely access to themâ€"are also included.