Statistics for Environmental Science and Management

Statistics for Environmental Science and Management

Author: Bryan F.J. Manly

Publisher: CRC Press

Published: 2008-10-21

Total Pages: 312

ISBN-13: 1439878129

DOWNLOAD EBOOK

Presenting a nonmathematical approach to this topic, Statistics for Environmental Science and Management introduces frequently used statistical methods and practical applications for the environmental field. This second edition features updated references and examples along with new and expanded material on data quality objectives, the generalized linear model, spatial data analysis, and Monte Carlo risk assessment. Additional topics covered include environmental monitoring, impact assessment, censored data, environmental sampling, the role of statistics in environmental science, assessing site reclamation, and drawing conclusions from data.


Statistics for Environmental Science and Management, Second Edition

Statistics for Environmental Science and Management, Second Edition

Author: Bryan F.J. Manly

Publisher: CRC Press

Published: 2008-10-21

Total Pages: 312

ISBN-13: 1420061488

DOWNLOAD EBOOK

Revised, expanded, and updated, this second edition of Statistics for Environmental Science and Management is that rare animal, a resource that works well as a text for graduate courses and a reference for appropriate statistical approaches to specific environmental problems. It is uncommon to find so many important environmental topics covered in one book. Its strength is author Bryan Manly’s ability to take a non-mathematical approach while keeping essential mathematical concepts intact. He clearly explains statistics without dwelling on heavy mathematical development. The book begins by describing the important role statistics play in environmental science. It focuses on how to collect data, highlighting the importance of sampling and experimental design in conducting rigorous science. It presents a variety of key topics specifically related to environmental science such as monitoring, impact assessment, risk assessment, correlated and censored data analysis, to name just a few. Revised, updated or expanded material on: Data Quality Objectives Generalized Linear Models Spatial Data Analysis Censored Data Monte Carlo Risk Assessment There are numerous books on environmental statistics; however, while some focus on multivariate methods and others on the basic components of probability distributions and how they can be used for modeling phenomenon, most do not include the material on sampling and experimental design that this one does. It is the variety of coverage, not sacrificing too much depth for breadth, that sets this book apart.


Applied Statistics for Environmental Science with R

Applied Statistics for Environmental Science with R

Author: Abbas F. M. Al-Karkhi

Publisher: Elsevier

Published: 2019-09-13

Total Pages: 242

ISBN-13: 0128186232

DOWNLOAD EBOOK

Applied Statistics for Environmental Science with R presents the theory and application of statistical techniques in environmental science and aids researchers in choosing the appropriate statistical technique for analyzing their data. Focusing on the use of univariate and multivariate statistical methods, this book acts as a step-by-step resource to facilitate understanding in the use of R statistical software for interpreting data in the field of environmental science. Researchers utilizing statistical analysis in environmental science and engineering will find this book to be essential in solving their day-to-day research problems. - Includes step-by-step tutorials to aid in understanding the process and implementation of unique data - Presents statistical theory in a simple way without complex mathematical proofs - Shows how to analyze data using R software and provides R scripts for all examples and figures


Statistical Data Analysis Explained

Statistical Data Analysis Explained

Author: Clemens Reimann

Publisher: John Wiley & Sons

Published: 2011-08-31

Total Pages: 380

ISBN-13: 1119965284

DOWNLOAD EBOOK

Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.


Practical Statistics for Environmental and Biological Scientists

Practical Statistics for Environmental and Biological Scientists

Author: John Townend

Publisher: John Wiley & Sons

Published: 2013-04-30

Total Pages: 290

ISBN-13: 1118687418

DOWNLOAD EBOOK

All students and researchers in environmental and biological sciences require statistical methods at some stage of their work. Many have a preconception that statistics are difficult and unpleasant and find that the textbooks available are difficult to understand. Practical Statistics for Environmental and Biological Scientists provides a concise, user-friendly, non-technical introduction to statistics. The book covers planning and designing an experiment, how to analyse and present data, and the limitations and assumptions of each statistical method. The text does not refer to a specific computer package but descriptions of how to carry out the tests and interpret the results are based on the approaches used by most of the commonly used packages, e.g. Excel, MINITAB and SPSS. Formulae are kept to a minimum and relevant examples are included throughout the text.


Statistics for Earth and Environmental Scientists

Statistics for Earth and Environmental Scientists

Author: John H. Schuenemeyer

Publisher: John Wiley & Sons

Published: 2011-04-12

Total Pages: 341

ISBN-13: 1118102215

DOWNLOAD EBOOK

A comprehensive treatment of statistical applications for solving real-world environmental problems A host of complex problems face today's earth science community, such as evaluating the supply of remaining non-renewable energy resources, assessing the impact of people on the environment, understanding climate change, and managing the use of water. Proper collection and analysis of data using statistical techniques contributes significantly toward the solution of these problems. Statistics for Earth and Environmental Scientists presents important statistical concepts through data analytic tools and shows readers how to apply them to real-world problems. The authors present several different statistical approaches to the environmental sciences, including Bayesian and nonparametric methodologies. The book begins with an introduction to types of data, evaluation of data, modeling and estimation, random variation, and sampling—all of which are explored through case studies that use real data from earth science applications. Subsequent chapters focus on principles of modeling and the key methods and techniques for analyzing scientific data, including: Interval estimation and Methods for analyzinghypothesis testing of means time series data Spatial statistics Multivariate analysis Discrete distributions Experimental design Most statistical models are introduced by concept and application, given as equations, and then accompanied by heuristic justification rather than a formal proof. Data analysis, model building, and statistical inference are stressed throughout, and readers are encouraged to collect their own data to incorporate into the exercises at the end of each chapter. Most data sets, graphs, and analyses are computed using R, but can be worked with using any statistical computing software. A related website features additional data sets, answers to selected exercises, and R code for the book's examples. Statistics for Earth and Environmental Scientists is an excellent book for courses on quantitative methods in geology, geography, natural resources, and environmental sciences at the upper-undergraduate and graduate levels. It is also a valuable reference for earth scientists, geologists, hydrologists, and environmental statisticians who collect and analyze data in their everyday work.


Environmental Data Analysis

Environmental Data Analysis

Author: Carsten Dormann

Publisher: Springer Nature

Published: 2020-12-20

Total Pages: 264

ISBN-13: 3030550206

DOWNLOAD EBOOK

Environmental Data Analysis is an introductory statistics textbook for environmental science. It covers descriptive, inferential and predictive statistics, centred on the Generalized Linear Model. The key idea behind this book is to approach statistical analyses from the perspective of maximum likelihood, essentially treating most analyses as (multiple) regression problems. The reader will be introduced to statistical distributions early on, and will learn to deploy models suitable for the data at hand, which in environmental science are often not normally distributed. To make the initially steep learning curve more manageable, each statistical chapter is followed by a walk-through in a corresponding R-based how-to chapter, which reviews the theory and applies it to environmental data. In this way, a coherent and expandable foundation in parametric statistics is laid, which can be expanded in advanced courses.The content has been “field-tested” in several years of courses on statistics for Environmental Science, Geography and Forestry taught at the University of Freiburg.


Using Statistics to Understand the Environment

Using Statistics to Understand the Environment

Author: Penny A. Cook

Publisher: Routledge

Published: 2005-08-10

Total Pages: 218

ISBN-13: 113463885X

DOWNLOAD EBOOK

Using Statistics to Understand the Environment covers all the basic tests required for environmental practicals and projects and points the way to the more advanced techniques that may be needed in more complex research designs. Following an introduction to project design, the book covers methods to describe data, to examine differences between samples, and to identify relationships and associations between variables. Featuring: worked examples covering a wide range of environmental topics, drawings and icons, chapter summaries, a glossary of statistical terms and a further reading section, this book focuses on the needs of the researcher rather than on the mathematics behind the tests.


Environmental and Ecological Statistics with R

Environmental and Ecological Statistics with R

Author: Song S. Qian

Publisher: CRC Press

Published: 2016-11-03

Total Pages: 560

ISBN-13: 1498728731

DOWNLOAD EBOOK

Emphasizing the inductive nature of statistical thinking, Environmental and Ecological Statistics with R, Second Edition, connects applied statistics to the environmental and ecological fields. Using examples from published works in the ecological and environmental literature, the book explains the approach to solving a statistical problem, covering model specification, parameter estimation, and model evaluation. It includes many examples to illustrate the statistical methods and presents R code for their implementation. The emphasis is on model interpretation and assessment, and using several core examples throughout the book, the author illustrates the iterative nature of statistical inference. The book starts with a description of commonly used statistical assumptions and exploratory data analysis tools for the verification of these assumptions. It then focuses on the process of building suitable statistical models, including linear and nonlinear models, classification and regression trees, generalized linear models, and multilevel models. It also discusses the use of simulation for model checking, and provides tools for a critical assessment of the developed models. The second edition also includes a complete critique of a threshold model. Environmental and Ecological Statistics with R, Second Edition focuses on statistical modeling and data analysis for environmental and ecological problems. By guiding readers through the process of scientific problem solving and statistical model development, it eases the transition from scientific hypothesis to statistical model.


Applied Statistics in Agricultural, Biological, and Environmental Sciences

Applied Statistics in Agricultural, Biological, and Environmental Sciences

Author: Barry Glaz

Publisher: John Wiley & Sons

Published: 2020-01-22

Total Pages: 672

ISBN-13: 0891183590

DOWNLOAD EBOOK

Better experimental design and statistical analysis make for more robust science. A thorough understanding of modern statistical methods can mean the difference between discovering and missing crucial results and conclusions in your research, and can shape the course of your entire research career. With Applied Statistics, Barry Glaz and Kathleen M. Yeater have worked with a team of expert authors to create a comprehensive text for graduate students and practicing scientists in the agricultural, biological, and environmental sciences. The contributors cover fundamental concepts and methodologies of experimental design and analysis, and also delve into advanced statistical topics, all explored by analyzing real agronomic data with practical and creative approaches using available software tools. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.