This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
This book provides a self-contained presentation of the statistical tools required for evaluating public programs, as advocated by many governments, the World Bank, the European Union, and the Organization for Economic Cooperation and Development. After introducing the methodological framework of program evaluation, the first chapters are devoted to the collection, elementary description and multivariate analysis of data as well as the estimation of welfare changes. The book then successively presents the tools of ex-ante methods (financial analysis, budget planning, cost-benefit, cost-effectiveness and multi-criteria evaluation) and ex-post methods (benchmarking, experimental and quasi-experimental evaluation). The step-by-step approach and the systematic use of numerical illustrations equip readers to handle the statistics of program evaluation. It not only offers practitioners from public administrations, consultancy firms and nongovernmental organizations the basic tools and advanced techniques used in program assessment, it is also suitable for executive management training, upper undergraduate and graduate courses, as well as for self-study.
For more information about the book, and to download STATA outputs for the case studies presented in each chapter, please visit www.oup.com/us/statisticaltools. --Book Jacket.
From the reviews: The purpose of the book under review is to give a survey of methods for the Bayesian or likelihood-based analysis of data. The author distinguishes between two types of methods: the observed data methods and the data augmentation ones. The observed data methods are applied directly to the likelihood or posterior density of the observed data. The data augmentation methods make use of the special "missing" data structure of the problem. They rely on an augmentation of the data which simplifies the likelihood or posterior density. #Zentralblatt für Mathematik#
This book is an introductory book on improving the quality of a process or a system, primarily through the technique of statistical process control (SPC). There are numerous technical manuals available for SPC, but this book differs in two ways: (1) the basic tools of SPC are introduced in a no-nonsense, simple, non-math manner, and (2) the methods can be learned and practiced in an uncomplicated fashion using free software (eZ SPC 2.0), which is available to all readers online as a downloadable product. The book explains QC7 Tools, control charts, and statistical analysis including basic design of experiments. Theoretical explanations of the analytical methods are avoided; instead, results are interpreted through the use of the software.
This book, dwelling upon the areas of statistics in a lucid, required and effective manner, aims at satisfying the academic needs of the students studying Economics, Mathematics, Geography, Management and BTech courses of renowned universities. This book contains elaborate discussions, examples, worked out problems, MCQ and more than 450 sums presented here in a study friendly way.
This book provides a unified introduction to a variety of computational algorithms for likelihood and Bayesian inference. In this second edition, I have attempted to expand the treatment of many of the techniques dis cussed, as well as include important topics such as the Metropolis algorithm and methods for assessing the convergence of a Markov chain algorithm. Prerequisites for this book include an understanding of mathematical statistics at the level of Bickel and Doksum (1977), some understanding of the Bayesian approach as in Box and Tiao (1973), experience with condi tional inference at the level of Cox and Snell (1989) and exposure to statistical models as found in McCullagh and Neider (1989). I have chosen not to present the proofs of convergence or rates of convergence since these proofs may require substantial background in Markov chain theory which is beyond the scope ofthis book. However, references to these proofs are given. There has been an explosion of papers in the area of Markov chain Monte Carlo in the last five years. I have attempted to identify key references - though due to the volatility of the field some work may have been missed.
Statistical Tools in Finance and Insurance presents ready-to-use solutions, theoretical developments and method construction for many practical problems in quantitative finance and insurance. Written by practitioners and leading academics in the field, this book offers a unique combination of topics from which every market analyst and risk manager will benefit. Covering topics such as heavy tailed distributions, implied trinomial trees, support vector machines, valuation of mortgage-backed securities, pricing of CAT bonds, simulation of risk processes and ruin probability approximation, the book does not only offer practitioners insight into new methods for their applications, but it also gives theoreticians insight into the applicability of the stochastic technology. Additionally, the book provides the tools, instruments and (online) algorithms for recent techniques in quantitative finance and modern treatments in insurance calculations. Written in an accessible and engaging style, this self-instructional book makes a good use of extensive examples and full explanations. Thenbsp;design of the text links theory and computational tools in an innovative way. All Quantlets for the calculation of examples given in the text are supported by the academic edition of XploRe and may be executed via XploRe Quantlet Server (XQS). The downloadable electronic edition of the book enables one to run, modify, and enhance all Quantlets on the spot.
Statistical Methods in Healthcare In recent years the number of innovative medicinal products and devices submitted and approved by regulatory bodies has declined dramatically. The medical product development process is no longer able to keep pace with increasing technologies, science and innovations and the goal is to develop new scientific and technical tools and to make product development processes more efficient and effective. Statistical Methods in Healthcare focuses on the application of statistical methodologies to evaluate promising alternatives and to optimize the performance and demonstrate the effectiveness of those that warrant pursuit is critical to success. Statistical methods used in planning, delivering and monitoring health care, as well as selected statistical aspects of the development and/or production of pharmaceuticals and medical devices are also addressed. With a focus on finding solutions to these challenges, this book: Provides a comprehensive, in-depth treatment of statistical methods in healthcare, along with a reference source for practitioners and specialists in health care and drug development. Offers a broad coverage of standards and established methods through leading edge techniques. Uses an integrated case study based approach, with focus on applications. Looks at the use of analytical and monitoring schemes to evaluate therapeutic performance. Features the application of modern quality management systems to clinical practice, and to pharmaceutical development and production processes. Addresses the use of modern statistical methods such as Adaptive Design, Seamless Design, Data Mining, Bayesian networks and Bootstrapping that can be applied to support the challenging new vision. Practitioners in healthcare-related professions, ranging from clinical trials to care delivery to medical device design, as well as statistical researchers in the field, will benefit from this book.