Statistical Modeling for Management

Statistical Modeling for Management

Author: Graeme D Hutcheson

Publisher: SAGE

Published: 2008-02-12

Total Pages: 255

ISBN-13: 1849202486

DOWNLOAD EBOOK

Bringing to life the most widely used quantitative measurements and statistical techniques in marketing, this book is packed with user-friendly descriptions, examples and study applications. The process of making marketing decisions is frequently dependent on quantitative analysis and the use of specific statistical tools and techniques which can be tailored and adapted to solve particular marketing problems. Any student hoping to enter the world of marketing will need to show that they understand and have mastered these techniques. A bank of downloadable data sets to compliment the tables provided in the textbook are provided free for you.


Multivariate Statistical Modeling in Engineering and Management

Multivariate Statistical Modeling in Engineering and Management

Author: Jhareswar Maiti

Publisher: CRC Press

Published: 2022-10-25

Total Pages: 421

ISBN-13: 1000618420

DOWNLOAD EBOOK

The book focuses on problem solving for practitioners and model building for academicians under multivariate situations. This book helps readers in understanding the issues, such as knowing variability, extracting patterns, building relationships, and making objective decisions. A large number of multivariate statistical models are covered in the book. The readers will learn how a practical problem can be converted to a statistical problem and how the statistical solution can be interpreted as a practical solution. Key features: Links data generation process with statistical distributions in multivariate domain Provides step by step procedure for estimating parameters of developed models Provides blueprint for data driven decision making Includes practical examples and case studies relevant for intended audiences The book will help everyone involved in data driven problem solving, modeling and decision making.


Statistical Methods in Customer Relationship Management

Statistical Methods in Customer Relationship Management

Author: V. Kumar

Publisher: John Wiley & Sons

Published: 2012-07-26

Total Pages: 227

ISBN-13: 1118349199

DOWNLOAD EBOOK

Statistical Methods in Customer Relationship Management focuses on the quantitative and modeling aspects of customer management strategies that lead to future firm profitability, with emphasis on developing an understanding of Customer Relationship Management (CRM) models as the guiding concept for profitable customer management. To understand and explore the functioning of CRM models, this book traces the management strategies throughout a customer’s tenure with a firm. Furthermore, the book explores in detail CRM models for customer acquisition, customer retention, customer acquisition and retention, customer churn, and customer win back. Statistical Methods in Customer Relationship Management: Provides an overview of a CRM system, introducing key concepts and metrics needed to understand and implement these models. Focuses on five CRM models: customer acquisition, customer retention, customer churn, and customer win back with supporting case studies. Explores each model in detail, from investigating the need for CRM models to looking at the future of the models. Presents models and concepts that span across the introductory, advanced, and specialist levels. Academics and practitioners involved in the area of CRM as well as instructors of applied statistics and quantitative marketing courses will benefit from this book.


Statistical Models and Methods for Financial Markets

Statistical Models and Methods for Financial Markets

Author: Tze Leung Lai

Publisher: Springer Science & Business Media

Published: 2008-09-08

Total Pages: 363

ISBN-13: 0387778276

DOWNLOAD EBOOK

The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.


Statistical Modeling and Analysis for Complex Data Problems

Statistical Modeling and Analysis for Complex Data Problems

Author: Pierre Duchesne

Publisher: Springer Science & Business Media

Published: 2005-12-05

Total Pages: 330

ISBN-13: 0387245553

DOWNLOAD EBOOK

This book reviews some of today’s more complex problems, and reflects some of the important research directions in the field. Twenty-nine authors – largely from Montreal’s GERAD Multi-University Research Center and who work in areas of theoretical statistics, applied statistics, probability theory, and stochastic processes – present survey chapters on various theoretical and applied problems of importance and interest to researchers and students across a number of academic domains.


Statistical Modelling and Sports Business Analytics

Statistical Modelling and Sports Business Analytics

Author: Vanessa Ratten

Publisher: Routledge

Published: 2020-05-11

Total Pages: 191

ISBN-13: 1000072118

DOWNLOAD EBOOK

This book introduces predictive analytics in sports and discusses the relationship between analytics and algorithms and statistics. It defines sports data to be used and explains why the unique nature of sports would make analytics useful. The book also explains why the proper use of predictive analytics includes knowing what they are incapable of doing as well as the role of predictive analytics in the bigger picture of sports entrepreneurship, innovation, and technology. The book looks at the mathematical foundations that enhance technical knowledge of predictive models and illustrates through practical, insightful cases that will help to empower readers to build and deploy their own analytic methodologies. This book targets readers who already have working knowledge of location, dispersion, and distribution statistics, bivariate relationships (scatter plots and correlation coefficients), and statistical significance testing and is a reliable, well-rounded reference for furthering their knowledge of predictive analytics in sports.


Statistical Analysis of Management Data

Statistical Analysis of Management Data

Author: Hubert Gatignon

Publisher: Springer Science & Business Media

Published: 2010-01-08

Total Pages: 396

ISBN-13: 1441912703

DOWNLOAD EBOOK

Statistical Analysis of Management Data provides a comprehensive approach to multivariate statistical analyses that are important for researchers in all fields of management, including finance, production, accounting, marketing, strategy, technology, and human resources. This book is especially designed to provide doctoral students with a theoretical knowledge of the concepts underlying the most important multivariate techniques and an overview of actual applications. It offers a clear, succinct exposition of each technique with emphasis on when each technique is appropriate and how to use it. This second edition, fully revised, updated, and expanded, reflects the most current evolution in the methods for data analysis in management and the social sciences. In particular, it places a greater emphasis on measurement models, and includes new chapters and sections on: confirmatory factor analysis canonical correlation analysis cluster analysis analysis of covariance structure multi-group confirmatory factor analysis and analysis of covariance structures. Featuring numerous examples, the book may serve as an advanced text or as a resource for applied researchers in industry who want to understand the foundations of the methods and to learn how they can be applied using widely available statistical software.


JMP Means Business

JMP Means Business

Author: Josef Schmee

Publisher:

Published: 2019-08-16

Total Pages: 608

ISBN-13: 9781642955156

DOWNLOAD EBOOK

JMP Means Business: Statistical Models for Management, by Josef Schmee and Jane Oppenlander, covers basic methods and models of classical statistics. Designed for business and MBA students, as well as industry professionals who need to use and interpret statistics, JMP Means Business covers data collection, descriptive statistics, distributions, confidence intervals and hypothesis tests, analysis of variance, contingency tables, simple and multiple regression, and exponential smoothing of time series. The easy-to-use format includes verbal and graphical explanations and promotes standard problem-solving techniques, with a limited use of formulas. Examples from business and industry serve to introduce each topic. Each example starts with a problem definition and data requirements, followed by a step-by-step analysis with JMP. Relevant output from this analysis is used to explain each method and to provide the basis for interpretation. Each chapter ends with a summary and a collection of problems for further study.


Applied Statistical Modeling and Data Analytics

Applied Statistical Modeling and Data Analytics

Author: Srikanta Mishra

Publisher: Elsevier

Published: 2017-10-27

Total Pages: 252

ISBN-13: 0128032804

DOWNLOAD EBOOK

Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. - Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains - Written by practitioners for practitioners - Presents an easy to follow narrative which progresses from simple concepts to more challenging ones - Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences - Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications


Monte-Carlo Simulation-Based Statistical Modeling

Monte-Carlo Simulation-Based Statistical Modeling

Author: Ding-Geng (Din) Chen

Publisher: Springer

Published: 2017-02-01

Total Pages: 440

ISBN-13: 9811033072

DOWNLOAD EBOOK

This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.