Statistical Methods for the Analysis of Biomedical Data

Statistical Methods for the Analysis of Biomedical Data

Author: Robert F. Woolson

Publisher: John Wiley & Sons

Published: 2011-01-25

Total Pages: 714

ISBN-13: 111803130X

DOWNLOAD EBOOK

Dieser Band behandelt eine Reihe statistischer Themen, die bei der Analyse biologischer und medizinischer Daten allgemein Anwendung finden. Diese 2. Auflage wurde komplett überarbeitet, aktualisiert und erweitert. Einige Kapitel sind neu hinzugekommen, u.a. zur multiplen linearen Regression in der biomedizinischen Forschung. Der Stoff ist so gegliedert, dass der Leser den Text unabhängig von der jeweiligen statistischen Methode leicht nach Problemstellungen durchsuchen kann. Mit zahlreichen durchgearbeiteten Beispielen, die detaillierte Lösungsangaben zu Problemen aus der Praxis liefern.


Computational Learning Approaches to Data Analytics in Biomedical Applications

Computational Learning Approaches to Data Analytics in Biomedical Applications

Author: Khalid Al-Jabery

Publisher: Academic Press

Published: 2019-11-20

Total Pages: 312

ISBN-13: 0128144831

DOWNLOAD EBOOK

Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained. - Includes an overview of data analytics in biomedical applications and current challenges - Updates on the latest research in supervised learning algorithms and applications, clustering algorithms and cluster validation indices - Provides complete coverage of computational and statistical analysis tools for biomedical data analysis - Presents hands-on training on the use of Python libraries, MATLAB® tools, WEKA, SAP-HANA and R/Bioconductor


Statistical Modeling for Biomedical Researchers

Statistical Modeling for Biomedical Researchers

Author: William D. Dupont

Publisher: Cambridge University Press

Published: 2009-02-12

Total Pages: 543

ISBN-13: 0521849527

DOWNLOAD EBOOK

A second edition of the easy-to-use standard text guiding biomedical researchers in the use of advanced statistical methods.


Essential Statistical Methods for Medical Statistics

Essential Statistical Methods for Medical Statistics

Author: J. Philip Miller

Publisher: Elsevier

Published: 2010-11-08

Total Pages: 363

ISBN-13: 0444537384

DOWNLOAD EBOOK

Essential Statistical Methods for Medical Statistics presents only key contributions which have been selected from the volume in the Handbook of Statistics: Medical Statistics, Volume 27 (2009). While the use of statistics in these fields has a long and rich history, the explosive growth of science in general, and of clinical and epidemiological sciences in particular, has led to the development of new methods and innovative adaptations of standard methods. This volume is appropriately focused for individuals working in these fields. Contributors are internationally renowned experts in their respective areas. - Contributors are internationally renowned experts in their respective areas - Addresses emerging statistical challenges in epidemiological, biomedical, and pharmaceutical research - Methods for assessing Biomarkers, analysis of competing risks - Clinical trials including sequential and group sequential, crossover designs, cluster randomized, and adaptive designs - Structural equations modelling and longitudinal data analysis


Statistical Methods in Medical Research

Statistical Methods in Medical Research

Author: Charan Singh Rayat

Publisher: Springer

Published: 2018-08-23

Total Pages: 165

ISBN-13: 9811308276

DOWNLOAD EBOOK

This book covers all aspects of statistical methods in detail with applications. It presents solutions to the needs of post-graduate medical students, doctors and basic medical scientists for statistical evaluation of data. In present era, dependency on softwares for statistical analysis is eroding the basic understanding of the statistical methods and their applications. As a result, there are very few basic medical scientists capable of analyzing their research data due to lack of knowledge and ability. This book has been written in systematic way supported by figures and tables for basic understanding of various terms, definitions, formulae and applications of statistical methods with solved examples and graphic presentation of data to create interest in this mathematical science.


Statistical Modeling in Biomedical Research

Statistical Modeling in Biomedical Research

Author: Yichuan Zhao

Publisher: Springer Nature

Published: 2020-03-19

Total Pages: 495

ISBN-13: 3030334163

DOWNLOAD EBOOK

This edited collection discusses the emerging topics in statistical modeling for biomedical research. Leading experts in the frontiers of biostatistics and biomedical research discuss the statistical procedures, useful methods, and their novel applications in biostatistics research. Interdisciplinary in scope, the volume as a whole reflects the latest advances in statistical modeling in biomedical research, identifies impactful new directions, and seeks to drive the field forward. It also fosters the interaction of scholars in the arena, offering great opportunities to stimulate further collaborations. This book will appeal to industry data scientists and statisticians, researchers, and graduate students in biostatistics and biomedical science. It covers topics in: Next generation sequence data analysis Deep learning, precision medicine, and their applications Large scale data analysis and its applications Biomedical research and modeling Survival analysis with complex data structure and its applications.


Intelligent Data Analysis for Biomedical Applications

Intelligent Data Analysis for Biomedical Applications

Author: D. Jude Hemanth

Publisher: Academic Press

Published: 2019-03-15

Total Pages: 297

ISBN-13: 0128156430

DOWNLOAD EBOOK

Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to automated data collection, such as computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and more. This book provides useful references for educational institutions, industry professionals, researchers, scientists, engineers and practitioners interested in intelligent data analysis, knowledge discovery, and decision support in databases. - Provides the methods and tools necessary for intelligent data analysis and gives solutions to problems resulting from automated data collection - Contains an analysis of medical databases to provide diagnostic expert systems - Addresses the integration of intelligent data analysis techniques within biomedical information systems


Introduction to Statistics for Biomedical Engineers

Introduction to Statistics for Biomedical Engineers

Author: Kristina Marie Ropella

Publisher: Morgan & Claypool Publishers

Published: 2007

Total Pages: 103

ISBN-13: 1598291963

DOWNLOAD EBOOK

Provides a bare-bones coverage of the most basic statistical analysis frequently used in biomedical engineering practice. The text introduces students to the essential vocabulary and basic concepts of probability and statistics that are required to perform the numerical summary and statistical analysis used in the biomedical field.


Biomedical Statistics

Biomedical Statistics

Author: Shakti Kumar Yadav

Publisher: Springer Nature

Published: 2019-11-23

Total Pages: 292

ISBN-13: 9813292946

DOWNLOAD EBOOK

This book is written in a very easy-to-follow format, and explains the key concepts of biomedical statistics in a lucid yet straightforward manner. It explains how mathematical and statistical tools can be used to find answers to common research questions. In addition, the main text is supplemented by a wealth of solved exercises and illustrative examples to aid in comprehension. Given its content, the book offers an invaluable quick reference guide for graduating students and can be very helpful in their examination process. At the same time, it represents a handy guide for medical and paramedical teachers, post-graduate medical students, research personnel, biomedical scientists and epidemiologists.


Computational and Statistical Methods for Analysing Big Data with Applications

Computational and Statistical Methods for Analysing Big Data with Applications

Author: Shen Liu

Publisher: Academic Press

Published: 2015-11-20

Total Pages: 208

ISBN-13: 0081006519

DOWNLOAD EBOOK

Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate