Statistical Inference and Simulation for Spatial Point Processes

Statistical Inference and Simulation for Spatial Point Processes

Author: Jesper Moller

Publisher: CRC Press

Published: 2003-09-25

Total Pages: 320

ISBN-13: 9780203496930

DOWNLOAD EBOOK

Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.


Random Point Processes in Time and Space

Random Point Processes in Time and Space

Author: Donald L. Snyder

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 489

ISBN-13: 1461231663

DOWNLOAD EBOOK

This book is a revision of Random Point Processes written by D. L. Snyder and published by John Wiley and Sons in 1975. More emphasis is given to point processes on multidimensional spaces, especially to pro cesses in two dimensions. This reflects the tremendous increase that has taken place in the use of point-process models for the description of data from which images of objects of interest are formed in a wide variety of scientific and engineering disciplines. A new chapter, Translated Poisson Processes, has been added, and several of the chapters of the fIrst edition have been modifIed to accommodate this new material. Some parts of the fIrst edition have been deleted to make room. Chapter 7 of the fIrst edition, which was about general marked point-processes, has been eliminated, but much of the material appears elsewhere in the new text. With some re luctance, we concluded it necessary to eliminate the topic of hypothesis testing for point-process models. Much of the material of the fIrst edition was motivated by the use of point-process models in applications at the Biomedical Computer Labo ratory of Washington University, as is evident from the following excerpt from the Preface to the first edition. "It was Jerome R. Cox, Jr. , founder and [1974] director of Washington University's Biomedical Computer Laboratory, who ftrst interested me [D. L. S.


Spatial Point Patterns

Spatial Point Patterns

Author: Adrian Baddeley

Publisher: CRC Press

Published: 2015-11-11

Total Pages: 830

ISBN-13: 1482210215

DOWNLOAD EBOOK

Modern Statistical Methodology and Software for Analyzing Spatial Point PatternsSpatial Point Patterns: Methodology and Applications with R shows scientific researchers and applied statisticians from a wide range of fields how to analyze their spatial point pattern data. Making the techniques accessible to non-mathematicians, the authors draw on th


Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Author: Elias T. Krainski

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 284

ISBN-13: 0429629850

DOWNLOAD EBOOK

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.


An Introduction to the Theory of Point Processes

An Introduction to the Theory of Point Processes

Author: D.J. Daley

Publisher: Springer Science & Business Media

Published: 2006-04-10

Total Pages: 487

ISBN-13: 0387215646

DOWNLOAD EBOOK

Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.


Spatio-Temporal Statistics with R

Spatio-Temporal Statistics with R

Author: Christopher K. Wikle

Publisher: CRC Press

Published: 2019-02-18

Total Pages: 397

ISBN-13: 0429649789

DOWNLOAD EBOOK

The world is becoming increasingly complex, with larger quantities of data available to be analyzed. It so happens that much of these "big data" that are available are spatio-temporal in nature, meaning that they can be indexed by their spatial locations and time stamps. Spatio-Temporal Statistics with R provides an accessible introduction to statistical analysis of spatio-temporal data, with hands-on applications of the statistical methods using R Labs found at the end of each chapter. The book: Gives a step-by-step approach to analyzing spatio-temporal data, starting with visualization, then statistical modelling, with an emphasis on hierarchical statistical models and basis function expansions, and finishing with model evaluation Provides a gradual entry to the methodological aspects of spatio-temporal statistics Provides broad coverage of using R as well as "R Tips" throughout. Features detailed examples and applications in end-of-chapter Labs Features "Technical Notes" throughout to provide additional technical detail where relevant Supplemented by a website featuring the associated R package, data, reviews, errata, a discussion forum, and more The book fills a void in the literature and available software, providing a bridge for students and researchers alike who wish to learn the basics of spatio-temporal statistics. It is written in an informal style and functions as a down-to-earth introduction to the subject. Any reader familiar with calculus-based probability and statistics, and who is comfortable with basic matrix-algebra representations of statistical models, would find this book easy to follow. The goal is to give as many people as possible the tools and confidence to analyze spatio-temporal data.


Bayesian Modeling of Spatio-Temporal Data with R

Bayesian Modeling of Spatio-Temporal Data with R

Author: Sujit Sahu

Publisher: CRC Press

Published: 2022-02-23

Total Pages: 385

ISBN-13: 1000543692

DOWNLOAD EBOOK

Applied sciences, both physical and social, such as atmospheric, biological, climate, demographic, economic, ecological, environmental, oceanic and political, routinely gather large volumes of spatial and spatio-temporal data in order to make wide ranging inference and prediction. Ideally such inferential tasks should be approached through modelling, which aids in estimation of uncertainties in all conclusions drawn from such data. Unified Bayesian modelling, implemented through user friendly software packages, provides a crucial key to unlocking the full power of these methods for solving challenging practical problems. Key features of the book: • Accessible detailed discussion of a majority of all aspects of Bayesian methods and computations with worked examples, numerical illustrations and exercises • A spatial statistics jargon buster chapter that enables the reader to build up a vocabulary without getting clouded in modeling and technicalities • Computation and modeling illustrations are provided with the help of the dedicated R package bmstdr, allowing the reader to use well-known packages and platforms, such as rstan, INLA, spBayes, spTimer, spTDyn, CARBayes, CARBayesST, etc • Included are R code notes detailing the algorithms used to produce all the tables and figures, with data and code available via an online supplement • Two dedicated chapters discuss practical examples of spatio-temporal modeling of point referenced and areal unit data • Throughout, the emphasis has been on validating models by splitting data into test and training sets following on the philosophy of machine learning and data science This book is designed to make spatio-temporal modeling and analysis accessible and understandable to a wide audience of students and researchers, from mathematicians and statisticians to practitioners in the applied sciences. It presents most of the modeling with the help of R commands written in a purposefully developed R package to facilitate spatio-temporal modeling. It does not compromise on rigour, as it presents the underlying theories of Bayesian inference and computation in standalone chapters, which would be appeal those interested in the theoretical details. By avoiding hard core mathematics and calculus, this book aims to be a bridge that removes the statistical knowledge gap from among the applied scientists.