Statistical Fluid Mechanics, Volume II

Statistical Fluid Mechanics, Volume II

Author: A. S. Monin

Publisher: Courier Corporation

Published: 2013-07-25

Total Pages: 898

ISBN-13: 0486318141

DOWNLOAD EBOOK

"If ever a field needed a definitive book, it is the study of turbulence; if ever a book on turbulence could be called definitive, it is this book." — Science Written by two of Russia's most eminent and productive scientists in turbulence, oceanography, and atmospheric physics, this two-volume survey is renowned for its clarity as well as its comprehensive treatment. The first volume begins with an outline of laminar and turbulent flow. The remainder of the book treats a variety of aspects of turbulence: its statistical and Lagrangian descriptions, shear flows near surfaces and free turbulence, the behavior of thermally stratified media, and diffusion. Volume Two continues and concludes the presentation. Topics include spectral functions, homogeneous fields, isotropic random fields, isotropic turbulence, self-preservation hypotheses, spectral energy transfer, the Millionshchikov hypothesis, acceleration fields, equations for higher moments and the closure problem, and turbulence in a compressible fluid. Additional subjects include general concepts of the local structure of turbulence at high Reynolds numbers, the theory of fully developed turbulence, the propagation of electromagnetic and acoustic waves through a turbulent medium, and the twinkling of stars. The book closes with a discussion of the functional formulation of the problem of turbulence, presenting the equations for the characteristic functional and methods for their solution.


Statistical Fluid Mechanics, Volume II

Statistical Fluid Mechanics, Volume II

Author: A. S. Monin

Publisher: Dover Publications

Published: 2007-06-05

Total Pages: 0

ISBN-13: 9780486458915

DOWNLOAD EBOOK

"If ever a field needed a definitive book, it is the study of turbulence; if ever a book on turbulence could be called definitive, it is this book." — Science Written by two of Russia's most eminent and productive scientists in turbulence, oceanography, and atmospheric physics, this two-volume survey is renowned for its clarity as well as its comprehensive treatment. The first volume begins with an outline of laminar and turbulent flow. The remainder of the book treats a variety of aspects of turbulence: its statistical and Lagrangian descriptions, shear flows near surfaces and free turbulence, the behavior of thermally stratified media, and diffusion. Volume Two continues and concludes the presentation. Topics include spectral functions, homogeneous fields, isotropic random fields, isotropic turbulence, self-preservation hypotheses, spectral energy transfer, the Millionshchikov hypothesis, acceleration fields, equations for higher moments and the closure problem, and turbulence in a compressible fluid. Additional subjects include general concepts of the local structure of turbulence at high Reynolds numbers, the theory of fully developed turbulence, the propagation of electromagnetic and acoustic waves through a turbulent medium, and the twinkling of stars. The book closes with a discussion of the functional formulation of the problem of turbulence, presenting the equations for the characteristic functional and methods for their solution.


Statistical Fluid Mechanics

Statistical Fluid Mechanics

Author: Andre? Sergeevich Monin

Publisher: Courier Corporation

Published: 2007-01-01

Total Pages: 786

ISBN-13: 0486458830

DOWNLOAD EBOOK

"If ever a book on turbulence could be called definitive," declared Science, "it is this book by two of Russia's most eminent and productive scientists in turbulence, oceanography, and atmospheric physics." Noted for its clarity as well as its comprehensive treatment, this two-volume set serves as text or reference. 1971 edition.


Physics of Continuous Matter, Second Edition

Physics of Continuous Matter, Second Edition

Author: B. Lautrup

Publisher: CRC Press

Published: 2011-03-22

Total Pages: 698

ISBN-13: 1420077007

DOWNLOAD EBOOK

Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World, Second Edition provides an introduction to the basic ideas of continuum physics and their application to a wealth of macroscopic phenomena. The text focuses on the many approximate methods that offer insight into the rich physics hidden in fundamental continuum mechanics equations. Like its acclaimed predecessor, this second edition introduces mathematical tools on a "need-to-know" basis. New to the Second Edition This edition includes three new chapters on elasticity of slender rods, energy, and entropy. It also offers more margin drawings and photographs and improved images of simulations. Along with reorganizing much of the material, the author has revised many of the physics arguments and mathematical presentations to improve clarity and consistency. The collection of problems at the end of each chapter has been expanded as well. These problems further develop the physical and mathematical concepts presented. With worked examples throughout, this book clearly illustrates both qualitative and quantitative physics reasoning. It emphasizes the importance in understanding the physical principles behind equations and the conditions underlying approximations. A companion website provides a host of ancillary materials, including software programs, color figures, and additional problems.


Statistical Mechanics of Turbulent Flows

Statistical Mechanics of Turbulent Flows

Author: Stefan Heinz

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 232

ISBN-13: 3662100223

DOWNLOAD EBOOK

The simulation of technological and environmental flows is very important for many industrial developments. A major challenge related to their modeling is to involve the characteristic turbulence that appears in most of these flows. The traditional way to tackle this question is to use deterministic equations where the effects of turbulence are directly parametrized, i. e. , assumed as functions of the variables considered. However, this approach often becomes problematic, in particular if reacting flows have to be simulated. In many cases, it turns out that appropriate approximations for the closure of deterministic equations are simply unavailable. The alternative to the traditional way of modeling turbulence is to construct stochastic models which explain the random nature of turbulence. The application of such models is very attractive: one can overcome the closure problems that are inherent to deterministic methods on the basis of relatively simple and physically consistent models. Thus, from a general point of view, the use of stochastic methods for turbulence simulations seems to be the optimal way to solve most of the problems related to industrial flow simulations. However, it turns out that this is not as simple as it looks at first glance. The first question concerns the numerical solution of stochastic equations for flows of environmental and technological interest. To calculate industrial flows, 3 one often has to consider a number of grid cells that is of the order of 100 .


Fluid Mechanics

Fluid Mechanics

Author: L D Landau

Publisher: Elsevier

Published: 2013-09-03

Total Pages: 556

ISBN-13: 1483161048

DOWNLOAD EBOOK

Fluid Mechanics, Second Edition deals with fluid mechanics, that is, the theory of the motion of liquids and gases. Topics covered range from ideal fluids and viscous fluids to turbulence, boundary layers, thermal conduction, and diffusion. Surface phenomena, sound, and shock waves are also discussed, along with gas flow, combustion, superfluids, and relativistic fluid dynamics. This book is comprised of 16 chapters and begins with an overview of the fundamental equations of fluid dynamics, including Euler's equation and Bernoulli's equation. The reader is then introduced to the equations of motion of a viscous fluid; energy dissipation in an incompressible fluid; damping of gravity waves; and the mechanism whereby turbulence occurs. The following chapters explore the laminar boundary layer; thermal conduction in fluids; dynamics of diffusion of a mixture of fluids; and the phenomena that occur near the surface separating two continuous media. The energy and momentum of sound waves; the direction of variation of quantities in a shock wave; one- and two-dimensional gas flow; and the intersection of surfaces of discontinuity are also also considered. This monograph will be of interest to theoretical physicists.


Lectures on Fluid Mechanics

Lectures on Fluid Mechanics

Author: Marvin Shinbrot

Publisher: Courier Corporation

Published: 2013-05-13

Total Pages: 242

ISBN-13: 0486267962

DOWNLOAD EBOOK

A readable and user-friendly introduction to fluid mechanics, this high-level text is geared toward advanced undergraduates and graduate students. Topics include a derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids, with considerable attention to the Navier-Stokes equations. 1973 edition.


Thermodynamics, Kinetics, and Microphysics of Clouds

Thermodynamics, Kinetics, and Microphysics of Clouds

Author: Vitaly I. Khvorostyanov

Publisher: Cambridge University Press

Published: 2014-08-25

Total Pages: 801

ISBN-13: 1316060713

DOWNLOAD EBOOK

Thermodynamics, Kinetics, and Microphysics of Clouds presents a unified theoretical foundation that provides the basis for incorporating cloud microphysical processes in cloud and climate models. In particular, the book provides: • A theoretical basis for understanding the processes of cloud particle formation, evolution and precipitation, with emphasis on spectral cloud microphysics based on numerical and analytical solutions of the kinetic equations for the drop and crystal size spectra along with the supersaturation equation • The latest detailed theories and parameterizations of drop and crystal nucleation suitable for cloud and climate models derived from the general principles of thermodynamics and kinetics • A platform for advanced parameterization of clouds in weather prediction and climate models • The scientific foundation for weather and climate modification by cloud seeding. This book will be invaluable for researchers and advanced students engaged in cloud and aerosol physics, and air pollution and climate research.


Encyclopedia of Global Warming and Climate Change, Second Edition

Encyclopedia of Global Warming and Climate Change, Second Edition

Author: S. George Philander

Publisher: SAGE Publications

Published: 2012-06-13

Total Pages: 2022

ISBN-13: 1506320759

DOWNLOAD EBOOK

The First Edition of the Encyclopedia of Global Warming and Climate Change provided a multi-authored, academic yet non-technical resource for students and teachers to understand the importance of global warming, to appreciate the effects of human activity and greenhouse gases around the world, and to learn the history of climate change and the research enterprise examining it. This edition was well received, with notable reviews. Since its publication, the debate over the advent of global warming at least partially brought on by human enterprise has continued to ebb and flow, depending literally on the weather, politics, and media coverage of climate summits and debates. Advances in research also change the discourse as new data is collected and new scientific projects continue to explore and explain global warming and climate change. Thus, a new, Second Edition updates more than half of the original entries and adds new perspectives and content to keep students and researchers up-to-date in a field that has proven provocatively lively.


Fractional Derivatives for Physicists and Engineers

Fractional Derivatives for Physicists and Engineers

Author: Vladimir V. Uchaikin

Publisher: Springer Science & Business Media

Published: 2013-07-09

Total Pages: 400

ISBN-13: 3642339115

DOWNLOAD EBOOK

The first derivative of a particle coordinate means its velocity, the second means its acceleration, but what does a fractional order derivative mean? Where does it come from, how does it work, where does it lead to? The two-volume book written on high didactic level answers these questions. Fractional Derivatives for Physicists and Engineers— The first volume contains a clear introduction into such a modern branch of analysis as the fractional calculus. The second develops a wide panorama of applications of the fractional calculus to various physical problems. This book recovers new perspectives in front of the reader dealing with turbulence and semiconductors, plasma and thermodynamics, mechanics and quantum optics, nanophysics and astrophysics. The book is addressed to students, engineers and physicists, specialists in theory of probability and statistics, in mathematical modeling and numerical simulations, to everybody who doesn't wish to stay apart from the new mathematical methods becoming more and more popular. Prof. Vladimir V. UCHAIKIN is a known Russian scientist and pedagogue, a Honored Worker of Russian High School, a member of the Russian Academy of Natural Sciences. He is the author of about three hundreds articles and more than a dozen books (mostly in Russian) in Cosmic ray physics, Mathematical physics, Levy stable statistics, Monte Carlo methods with applications to anomalous processes in complex systems of various levels: from quantum dots to the Milky Way galaxy.