"Energy is vital to global prosperity, yet dependence on fossil fuels as our primary energy source contributes to global climate change, environmental degradation, and health problems1. J.O.'.M. Bockris, The origin of ideas on a hydrogen economy and its so"
This book provides in-depth information on basic and applied aspects of biohydrogen production. It begins with an introduction to the topic, and follows with the basic scientific aspects of biohydrogen production, such as the enzyme involved in biohydrogen production, the microorganisms and metabolic engineering information. It then provides state-of-art information on various aspects of biohydrogen production methods such as from solid wastes, from industrial effluents, thermo-chemical route for biohydrogen production, etc. It also includes information on engineering aspects such as the design of bioreactors for biohydrogen production and scale-up issues. Finally, it touches on the issues of hydrogen economy and commercialization. The book introduces you to all aspects of biohydrogen research, helping you understand the various issues involved and plan your own research based on recent findings and commercial needs. - Provides information on the most advanced and innovative biohydrogen technologies, including fermentation and metabolic processes - Provides examples on large-scale and commercial applications of biohydrogen processes and explains the steps necessary for scaling-up - Explains the chemistry/theory of the processes involved and provides information on integration of the various processes and technologies on biohydrogen - Guides through the process design, reactors and materials selection - Devotes a whole chapter on the economical aspects of the processes and their commercialization
There are many biological paths to hydrogen production, each with potential advantages, but also with its own challenges to implementation. Nonsulfur photosynthetic bacteria are able to capture solar energy and use it to drive the nearly complete conversion of substrate to hydrogen and carbon dioxide in a process called photofermentation. These organisms, which have the potential capacity to use a variety of feedstocks, are well known for their light-driven conversion of organic acids to hydrogen and carbon dioxide. Thus, they are ideal candidates for two-stage or coculture systems that derive additional hydrogen from the effluents of dark fermentations. In addition, various industrial and agricultural waste streams rich in organic acids can potentially serve as substrates for photofermentation. The metabolic and enzymatic properties underlying photofermentation, as well as possible waste streams that may be used successfully, are reviewed. Recent progress, including the use of immobilized systems and metabolic engineering, is highlighted.
Increase in green, renewable and sustainable energy demand due to higher environmental impacts (e.g. Greenhouse gases emissions, climate change, etc.) on consumption of fossil fuel resource put down an extra pressure on government, researchers and industrialists. Among several available biofuel options, biohydrogen is considered as one of the best environmentally clean fuel and a strong candidate to fulfil the future demand of sustainable energy resource. Although, biohydrogen production technology and its use as a fuel is still in infancy stage. Selection of most sustainable production pathway, increase in production upto industrial scale and cost efficiency are some issue still persist with the biohydrogen research. “Biohydrogen Production: Sustainability of Current Technology and Future Perspective” is giving an insight for the sustainable production of biohydrogen at industrial scale. The process of biohydrogen production is complex and to opt the best suited production system for industrial scale is a frantic task. This book will provide an in depth information on all available technologies for biohydrogen production and feedstock options to choose upon. This book is also providing information on present status of the research in the field and possibility to change future fuel economy in to biohydrogen economy. Experts views provided in the chapters by renowned researchers from all over the globe in the field of biohydrogen research made this book a cornucopia of present research and future perspective of biohydrogen. This book is targeted at the researchers working on biohydrogen as well as the bioenergy scientist planning to move towards biohydrogen research. This book will provide a platform for motivation of researchers and industrialists for innovative ideas and thoughts to bring biohydrogen production at industrial scale.
Biotechnology for Zero Waste The use of biotechnology to minimize waste and maximize resource valorization In Biotechnology for Zero Waste: Emerging Waste Management Techniques, accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more. Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. Biotechnology for Zero Waste effectively guides readers on the path to creating sustainable products from waste. The book also includes: A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhancing biogas production Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste Practical discussions of bioreactors for zero waste and waste2energy with biotechnology An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, Biotechnology for Zero Waste: Emerging Waste Management Techniques will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists.
This volume provides the technical information required for the production of biofuels and chemicals from lignocellulosic biomass. It starts with a brief overview of the importance, applications, and production processes of different lignocellulosic products. Further chapters review the perspectives of waste-based biofuels and biochemicals; the pretreatment of lignocellulosic biomass for biofuel production; cellulolytic enzyme systems for the hydrolysis of lignocelluloses; and basic and applied aspects of the production of bioethanol, biogas, biohydrogen, and biobutanol from lignocelluloses. This book is recommended for researchers and engineers and particularly students taking biofuel courses at graduate level.
Renewable Hydrogen: Opportunities and Challenges in Commercial Success presents fundamental principles and the latest research and technological advances in renewable hydrogen commercialization. With commercial scenarios and case studies, the book offers practical guidance for the scale-up of hydrogen production and storage.Beginning with an introduction to alternative energy resources, Part 1 presents a deep dive into the chemical, biochemical and electrochemical processes of hydrogen production. Part 2 discusses hydrogen storage and transportation, with Part 3 reviewing the applications of hydrogen in the automobile, space and chemical industries. Finally, Part 4 considers future perspectives, including challenges and techno economics.Renewable Hydrogen: Opportunities and Challenges in Commercial Success is an essential read for those seeking to understand how to successfully apply hydrogen production and storage research to an industrial scale. - Presents a comprehensive review of hydrogen production and scale-up perspective - Provides a detailed compilation of commercial scale hydrogen storage, along with opportunities and challenges faced during economical production - Highlights future trends and government policies that will impact the renewable hydrogen production
The central theme of this book “Microbial BioEnergy: Hydrogen Production” is focused on the biological machinery that microorganisms use to produce hydrogen gas. The book summarizes the achievements over the past decade in the biochemistry, structural and molecular biology, genomics and applied aspects of microbial H2-production, including microbial fuel cells (MFC), by phototrophs such as purple sulfur and non-sulfur bacteria (Thiocapsa spp., Rhodobacter and Rhodopseudomonas spp.) microalgae (Chlamydomonas) and cyanobacteria (Anabaena spp.) along with anaerobes and thermophiles such as Caldicellulosiruptor and Thermotoga. This is the first book of this series entirely devoted to microbial bio-hydrogen production and is intended to be a precious source of information for PhD students, researchers and undergraduates from disciplines such as microbiology, biochemistry, biotechnology, photochemistry and chemical engineering, interested in basic and applied sciences.
Reviews the latest advances in biofuel manufacturing technologies and discusses the deployment of other renewable energy for transportation Aimed at providing an interface useful to business and scientific managers, this book focuses on the key challenges that still impede the realization of the billion-ton renewable fuels vision. It places great emphasis on a global view of the topic, reviewing deployment and green energy technology in different countries across Africa, Asia, South America, the EU, and the USA. It also integrates scientific, technological, and business development perspectives to highlight the key developments that are necessary for the global replacement of fossil fuels with green energy solutions. Green Energy to Sustainability: Strategies for Global Industries examines the most recent developments in biofuel manufacturing technologies in light of business, financial, value chain, and supply chain concerns. It also covers the use of other renewable energy sources like solar energy for transportation and proposes a view of the challenges over the next two to five decades, and how these will deeply modify the industrial world in the third millennium. The coming of age of electric vehicles is also looked at, as is the impact of their deployment on the biomass to biofuels value chain. Offers extensive updates on the field of green energy for global industries Covers the structure of the energy business; chemicals and diesel from biomass; ethanol and butanol; hydrogen and methane; and more Provides an expanded focus on the next generation of energy technologies Reviews the latest advances in biofuel manufacturing technologies Integrates scientific, technological and business perspectives Highlights important developments needed for replacing fossil fuels with green energy Green Energy to Sustainability: Strategies for Global Industries will appeal to academic researchers working on the production of fuels from renewable feedstocks and those working in green and sustainable chemistry, and chemical/process engineering. It is also an excellent textbook for courses in bioprocessing technology, renewable resources, green energy, and sustainable chemistry.
In combating global warming and other environmental issues over the use of fossil fuels, extensive research has been focusing on developing hydrogen production from biological processes. Biohydrogen is considered a promising future biofuel because of its intrinsic clean and high-energy content properties and the way it is produced. In addition to being produced through environmentally friendly biological means, its conversion to energy yields only pure water, which is an ideal energy carrier in reducing greenhouse gas emissions from fossil fuel combustion. Unlike other well-developed biofuels such as bioethanol and biodiesel, biohydrogen production is still in the early stage of development. A variety of technologies are being developed for biohydrogen production. This chapter presents a review of the state-of-the-art and perspectives of bioprocess design for biohydrogen production research in the context of pathways, microorganisms, metabolic flux analysis, process design, and reactor system. Challenges and prospects of biohydrogen production are also outlined.