Standby Power Management Architecture for Deep-submicron Systems

Standby Power Management Architecture for Deep-submicron Systems

Author: Michael Alan Sheets

Publisher:

Published: 2006

Total Pages: 308

ISBN-13:

DOWNLOAD EBOOK

In deep-submicron processes a significant portion of the power budget is lost in standby power due to increasing leakage effects. For systems that have long idle times punctuated by bursts of activity, such as PDAs, cell-phones, and wireless sensor networks nodes, this standby power consumption reduces the effectiveness of duty-cycling. This work surveys a number of subthreshold leakage reduction techniques and identifies supply rail gating "MTCMOS" as the most promising. MTCMOS is a dynamic technique that has two distinct modes: an active processing mode and a lower power sleep mode. The smallest area implementations of MTCMOS have the side-effect of losing the state of the system when in sleep mode. This complicates the resumption of the active mode, because traditional designs are intolerent to the loss of state. This work presents a general framework to reduce the state maintenence requirements during sleep mode without losing information required to resume the active mode. The framework is applied to finite state machines and microprocessors, since these are commonly used in system design. Partitioning the system into subsystems with individually controlled supply rails "termed power domains" allows fine-grain control of the power mode for portions of the chip. Each power domain must be dynamically put in the appropriate power mode to ensure correct system operation while minimizing power consumption. This control logic collectively forms the core of a power manager. Most power manager implementation approaches are largely ad-hoc and custom designed for each application. This work presents a structured methodology and architecture for the implementation and control of power domains to form a power managed system. Approaches to the partitioning and implementation of individual power domains are explored. The functional requirements for the power manager


Multiprocessor System-on-Chip

Multiprocessor System-on-Chip

Author: Michael Hübner

Publisher: Springer Science & Business Media

Published: 2010-11-25

Total Pages: 268

ISBN-13: 1441964606

DOWNLOAD EBOOK

The purpose of this book is to evaluate strategies for future system design in multiprocessor system-on-chip (MPSoC) architectures. Both hardware design and integration of new development tools will be discussed. Novel trends in MPSoC design, combined with reconfigurable architectures are a main topic of concern. The main emphasis is on architectures, design-flow, tool-development, applications and system design.


Low Power Design in Deep Submicron Electronics

Low Power Design in Deep Submicron Electronics

Author: W. Nebel

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 582

ISBN-13: 1461556856

DOWNLOAD EBOOK

Low Power Design in Deep Submicron Electronics deals with the different aspects of low power design for deep submicron electronics at all levels of abstraction from system level to circuit level and technology. Its objective is to guide industrial and academic engineers and researchers in the selection of methods, technologies and tools and to provide a baseline for further developments. Furthermore the book has been written to serve as a textbook for postgraduate student courses. In order to achieve both goals, it is structured into different chapters each of which addresses a different phase of the design, a particular level of abstraction, a unique design style or technology. These design-related chapters are amended by motivations in Chapter 2, which presents visions both of future low power applications and technology advancements, and by some advanced case studies in Chapter 9. From the Foreword: `... This global nature of design for low power was well understood by Wolfgang Nebel and Jean Mermet when organizing the NATO workshop which is the origin of the book. They invited the best experts in the field to cover all aspects of low power design. As a result the chapters in this book are covering deep-submicron CMOS digital system design for low power in a systematic way from process technology all the way up to software design and embedded software systems. Low Power Design in Deep Submicron Electronics is an excellent guide for the practicing engineer, the researcher and the student interested in this crucial aspect of actual CMOS design. It contains about a thousand references to all aspects of the recent five years of feverish activity in this exciting aspect of design.' Hugo de Man Professor, K.U. Leuven, Belgium Senior Research Fellow, IMEC, Belgium


Stochastic Process Variation in Deep-Submicron CMOS

Stochastic Process Variation in Deep-Submicron CMOS

Author: Amir Zjajo

Publisher: Springer Science & Business Media

Published: 2013-11-19

Total Pages: 207

ISBN-13: 9400777817

DOWNLOAD EBOOK

One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key device parameters affecting performance of integrated circuits. The growth of variability can be attributed to multiple factors, including the difficulty of manufacturing control, the emergence of new systematic variation-generating mechanisms, and most importantly, the increase in atomic-scale randomness, where device operation must be described as a stochastic process. In addition to wide-sense stationary stochastic device variability and temperature variation, existence of non-stationary stochastic electrical noise associated with fundamental processes in integrated-circuit devices represents an elementary limit on the performance of electronic circuits. In an attempt to address these issues, Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms offers unique combination of mathematical treatment of random process variation, electrical noise and temperature and necessary circuit realizations for on-chip monitoring and performance calibration. The associated problems are addressed at various abstraction levels, i.e. circuit level, architecture level and system level. It therefore provides a broad view on the various solutions that have to be used and their possible combination in very effective complementary techniques for both analog/mixed-signal and digital circuits. The feasibility of the described algorithms and built-in circuitry has been verified by measurements from the silicon prototypes fabricated in standard 90 nm and 65 nm CMOS technology.


Handbook of Energy-Aware and Green Computing - Two Volume Set

Handbook of Energy-Aware and Green Computing - Two Volume Set

Author: Ishfaq Ahmad

Publisher: CRC Press

Published: 2016-02-03

Total Pages: 1284

ISBN-13: 1482254441

DOWNLOAD EBOOK

Implementing energy-efficient CPUs and peripherals as well as reducing resource consumption have become emerging trends in computing. As computers increase in speed and power, their energy issues become more and more prevalent. The need to develop and promote environmentally friendly computer technologies and systems has also come to the forefront


Low-Power CMOS Circuits

Low-Power CMOS Circuits

Author: Christian Piguet

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 499

ISBN-13: 1351836609

DOWNLOAD EBOOK

The power consumption of microprocessors is one of the most important challenges of high-performance chips and portable devices. In chapters drawn from Piguet's recently published Low-Power Electronics Design, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools addresses the design of low-power circuitry in deep submicron technologies. It provides a focused reference for specialists involved in designing low-power circuitry, from transistors to logic gates. The book is organized into three broad sections for convenient access. The first examines the history of low-power electronics along with a look at emerging and possible future technologies. It also considers other technologies, such as nanotechnologies and optical chips, that may be useful in designing integrated circuits. The second part explains the techniques used to reduce power consumption at low levels. These include clock gating, leakage reduction, interconnecting and communication on chips, and adiabatic circuits. The final section discusses various CAD tools for designing low-power circuits. This section includes three chapters that demonstrate the tools and low-power design issues at three major companies that produce logic synthesizers. Providing detailed examinations contributed by leading experts, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools supplies authoritative information on how to design and model for high performance with low power consumption in modern integrated circuits. It is a must-read for anyone designing modern computers or embedded systems.


Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation

Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation

Author: Vassilis Paliouras

Publisher: Springer Science & Business Media

Published: 2005-09-06

Total Pages: 767

ISBN-13: 3540290133

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 15th International Workshop on Power and Timing Optimization and Simulation, PATMOS 2005, held in Leuven, Belgium in September 2005. The 74 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on low-power processors, code optimization for low-power, high-level design, telecommunications and signal processing, low-power circuits, system-on-chip design, busses and interconnections, modeling, design automation, low-power techniques, memory and register files, applications, digital circuits, and analog and physical design.