Investigation of Testing Methods to Determine Long-term Durability of Wisconsin Aggregates

Investigation of Testing Methods to Determine Long-term Durability of Wisconsin Aggregates

Author:

Publisher:

Published: 2013

Total Pages: 112

ISBN-13:

DOWNLOAD EBOOK

Approximately 10 to 11 million tons of aggregates are utilized in transportation infrastructure projects in Wisconsin annually. The quality of aggregates has a tremendous influence on the performance and durability of roadways and bridges. In this Phase II research study, detailed statistical analyses were performed on over 1,000 sets of historical aggregate test results and the experimental results from the Phase I study. Test results from other states were analyzed as well. Aggregate tests were performed on 12 known marginal or poor Wisconsin aggregates to specifically address test performance of such aggregates. Selected aggregates were scanned using X-ray computed tomography to assess the effects of freeze-thaw and sodium sulfate exposure on the internal void system. The results of multi-parameter logistic regression analyses show that the pass/fail outcomes of the Micro-Deval test can be predicted when LA abrasion, absorption, and sodium sulfate soundness test results are known. The unconfined freeze-thaw test outcomes cannot be predicted from results of other tests (not correlated). Therefore, the unconfined freeze-thaw test should be part of any test protocol as it measures an aggregate characteristic that cannot be obtained from other tests. The percentiles associated with any proposed acceptance threshold limits for various aggregate tests should be determined using the statistical data provided.


Clay in Engineering Geology

Clay in Engineering Geology

Author: J.E. Gillott

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 485

ISBN-13: 0444600493

DOWNLOAD EBOOK

Engineering geology is an interdisciplinary subject concerned with the application of geological science to engineering practice, and it is therefore important for the engineering geologist to recognize the boundary between engineering application and purely scientific enquiry. Much research in applied clay science results from imperfectly understood engineering behaviour. Engineering geology is most closely allied to the geotechnical and materials areas of civil engineering. The scope of the present book is limited to the influence of clay but because clay is almost ubiquitous in earth materials the subject still remains broad. In soil and rock, clay is the smallest size fraction, but it is that very fact which often determines its major influences on engineering behaviour.In this book the author reviews the importance of clay in engineering geology and summarizes present knowledge in this field. The plan of the book has remained unchanged since the first edition was published in 1968 but the text, diagrams and reference lists have all been extensively updated. The first 5 chapters review the classification, origin, composition, fabric and physical chemistry of clays. Behavioural aspects, covered in the following 4 chapters, include moisture interaction, strength and rheology, soil stabilization and the use of clays as materials. The final 3 chapters describe methods of analysis of clays and soils.Clay in Engineering Geology contains material drawn from a wide variety of sources and, together with its literature review and indexes, will provide much of value to geologists, mineralogists, civil and geotechnical engineers concerned with applied clay science.