Stability Estimates for Hybrid Coupled Domain Decomposition Methods

Stability Estimates for Hybrid Coupled Domain Decomposition Methods

Author: Olaf Steinbach

Publisher: Springer Science & Business Media

Published: 2003-03-10

Total Pages: 132

ISBN-13: 9783540002772

DOWNLOAD EBOOK

Domain decomposition methods are a well established tool for an efficient numerical solution of partial differential equations, in particular for the coupling of different model equations and of different discretization methods. Based on the approximate solution of local boundary value problems either by finite or boundary element methods, the global problem is reduced to an operator equation on the skeleton of the domain decomposition. Different variational formulations then lead to hybrid domain decomposition methods.


Dirichlet-dirichlet Domain Decomposition Methods For Elliptic Problems: H And Hp Finite Element Discretizations

Dirichlet-dirichlet Domain Decomposition Methods For Elliptic Problems: H And Hp Finite Element Discretizations

Author: Vadim Glebiovich Korneev

Publisher: World Scientific

Published: 2015-01-29

Total Pages: 484

ISBN-13: 9814578479

DOWNLOAD EBOOK

Domain decomposition (DD) methods provide powerful tools for constructing parallel numerical solution algorithms for large scale systems of algebraic equations arising from the discretization of partial differential equations. These methods are well-established and belong to a fast developing area. In this volume, the reader will find a brief historical overview, the basic results of the general theory of domain and space decomposition methods as well as the description and analysis of practical DD algorithms for parallel computing. It is typical to find in this volume that most of the presented DD solvers belong to the family of fast algorithms, where each component is efficient with respect to the arithmetical work. Readers will discover new analysis results for both the well-known basic DD solvers and some DD methods recently devised by the authors, e.g., for elliptic problems with varying chaotically piecewise constant orthotropism without restrictions on the finite aspect ratios.The hp finite element discretizations, in particular, by spectral elements of elliptic equations are given significant attention in current research and applications. This volume is the first to feature all components of Dirichlet-Dirichlet-type DD solvers for hp discretizations devised as numerical procedures which result in DD solvers that are almost optimal with respect to the computational work. The most important DD solvers are presented in the matrix/vector form algorithms that are convenient for practical use.


Sobolev Gradients and Differential Equations

Sobolev Gradients and Differential Equations

Author: john neuberger

Publisher: Springer

Published: 2009-11-10

Total Pages: 287

ISBN-13: 3642040411

DOWNLOAD EBOOK

A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair portion of the material have in the past been able to use the theory on their own applications and also gain an appreciation of the possibility of a rather comprehensive point of view on the subject of partial differential equations.


Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems

Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems

Author: Torsten Linß

Publisher: Springer

Published: 2009-11-21

Total Pages: 331

ISBN-13: 3642051340

DOWNLOAD EBOOK

This is a book on numerical methods for singular perturbation problems – in part- ular, stationary reaction-convection-diffusion problems exhibiting layer behaviour. More precisely, it is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. Numerical methods for singularly perturbed differential equations have been studied since the early 1970s and the research frontier has been constantly - panding since. A comprehensive exposition of the state of the art in the analysis of numerical methods for singular perturbation problems is [141] which was p- lished in 2008. As that monograph covers a big variety of numerical methods, it only contains a rather short introduction to layer-adapted meshes, while the present book is exclusively dedicated to that subject. An early important contribution towards the optimisation of numerical methods by means of special meshes was made by N.S. Bakhvalov [18] in 1969. His paper spawned a lively discussion in the literature with a number of further meshes - ing proposed and applied to various singular perturbation problems. However, in the mid 1980s, this development stalled, but was enlivened again by G.I. Shishkin’s proposal of piecewise-equidistant meshes in the early 1990s [121,150]. Because of their very simple structure, they are often much easier to analyse than other meshes, although they give numerical approximations that are inferior to solutions on c- peting meshes. Shishkin meshes for numerous problems and numerical methods have been studied since and they are still very much in vogue.


Geometric Description of Images as Topographic Maps

Geometric Description of Images as Topographic Maps

Author: Vicent Caselles

Publisher: Springer

Published: 2009-12-24

Total Pages: 200

ISBN-13: 3642046118

DOWNLOAD EBOOK

This book discusses the basic geometric contents of an image and presents a treedatastructuretohandleite?ciently.Itanalyzesalsosomemorphological operators that simplify this geometric contents and their implementation in termsofthe datastructuresintroduced.It?nallyreviewsseveralapplications to image comparison and registration, to edge and corner computation, and the selection of features associated to a given scale in images. Let us ?rst say that, to avoid a long list, we shall not give references in this summary; they are obviously contained in this monograph. A gray level image is usually modeled as a function de?ned in a bounded N domain D? R (typically N = 2 for usual snapshots, N=3formedical images or movies) with values in R. The sensors of a camera or a CCD array transform the continuum of light energies to a ?nite interval of values by means of a nonlinear function g. The contrast change g depends on the pr- ertiesofthesensors,butalsoontheilluminationconditionsandthere?ection propertiesofthe objects,andthoseconditionsaregenerallyunknown.Images are thus observed modulo an arbitrary and unknown contrast change.


Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction

Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction

Author: Alberto Parmeggiani

Publisher: Springer

Published: 2010-07-23

Total Pages: 260

ISBN-13: 3642119220

DOWNLOAD EBOOK

This book grew out of a series of lectures given at the Mathematics Department of Kyushu University in the Fall 2006, within the support of the 21st Century COE Program (2003–2007) “Development of Dynamical Mathematics with High Fu- tionality” (Program Leader: prof. Mitsuhiro Nakao). It was initially published as the Kyushu University COE Lecture Note n- ber 8 (COE Lecture Note, 8. Kyushu University, The 21st Century COE Program “DMHF”, Fukuoka, 2008. vi+234 pp.), and in the present form is an extended v- sion of it (in particular, I have added a section dedicated to the Maslov index). The book is intended as a rapid (though not so straightforward) pseudodiff- ential introduction to the spectral theory of certain systems, mainly of the form a +a where the entries of a are homogeneous polynomials of degree 2 in the 2 0 2 n n (x,?)-variables, (x,?)? R×R,and a is a constant matrix, the so-called non- 0 commutative harmonic oscillators, with particular emphasis on a class of systems introduced by M. Wakayama and myself about ten years ago. The class of n- commutative harmonic oscillators is very rich, and many problems are still open, and worth of being pursued.


Banach Spaces and Descriptive Set Theory: Selected Topics

Banach Spaces and Descriptive Set Theory: Selected Topics

Author: Pandelis Dodos

Publisher: Springer

Published: 2010-04-15

Total Pages: 180

ISBN-13: 3642121535

DOWNLOAD EBOOK

These notes are devoted to the study of some classical problems in the Geometry of Banach spaces. The novelty lies in the fact that their solution relies heavily on techniques coming from Descriptive Set Theory. Thecentralthemeisuniversalityproblems.Inparticular,thetextprovides an exposition of the methods developed recently in order to treat questions of the following type: (Q) LetC be a class of separable Banach spaces such that every space X in the classC has a certain property, say property (P). When can we ?nd a separable Banach space Y which has property (P) and contains an isomorphic copy of every member ofC? We will consider quite classical properties of Banach spaces, such as “- ing re?exive,” “having separable dual,” “not containing an isomorphic copy of c ,” “being non-universal,” etc. 0 It turns out that a positive answer to problem (Q), for any of the above mentioned properties, is possible if (and essentially only if) the classC is “simple.” The “simplicity” ofC is measured in set theoretic terms. Precisely, if the classC is analytic in a natural “coding” of separable Banach spaces, then we can indeed ?nd a separable space Y which is universal for the class C and satis?es the requirements imposed above.


Intersection Spaces, Spatial Homology Truncation, and String Theory

Intersection Spaces, Spatial Homology Truncation, and String Theory

Author: Markus Banagl

Publisher: Springer Science & Business Media

Published: 2010-07-08

Total Pages: 237

ISBN-13: 3642125883

DOWNLOAD EBOOK

The present monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincaré duality.


Open Quantum Systems II

Open Quantum Systems II

Author: Stéphane Attal

Publisher: Springer

Published: 2006-08-29

Total Pages: 254

ISBN-13: 3540339663

DOWNLOAD EBOOK

Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. Significant progress in the understanding of such systems has been made recently. These books present the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications.