This is a reference source for practising engineers specializing in electric power engineering and industrial electronics. It begins with the basic dynamic models of induction motors and progresses to low- and high-performance drive systems.
Artificial intelligence has been applied to many areas of science and technology, including the power and energy sector. Renewable energy in particular has experienced the tremendous positive impact of these developments. With the recent evolution of smart energy technologies, engineers and scientists working in this sector need an exhaustive source of current knowledge to effectively cater to the energy needs of citizens of developing countries. Computational Methodologies for Electrical and Electronics Engineers is a collection of innovative research that provides a complete insight and overview of the application of intelligent computational techniques in power and energy. Featuring research on a wide range of topics such as artificial neural networks, smart grids, and soft computing, this book is ideally designed for programmers, engineers, technicians, ecologists, entrepreneurs, researchers, academicians, and students.
This book provides the most important steps and concerns in the design of estimation and control algorithms for induction motors. A single notation and modern nonlinear control terminology is used to make the book accessible, although a more theoretical control viewpoint is also given. Focusing on the induction motor with, the concepts of stability and nonlinear control theory given in appendices, this book covers: speed sensorless control; design of adaptive observers and parameter estimators; a discussion of nonlinear adaptive controls containing parameter estimation algorithms; and comparative simulations of different control algorithms. The book sets out basic assumptions, structural properties, modelling, state feedback control and estimation algorithms, then moves to more complex output feedback control algorithms, based on stator current measurements, and modelling for speed sensorless control. The induction motor exhibits many typical and unavoidable nonlinear features.
Induction motors are the most important workhorses in industry. They are mostly used as constant-speed drives when fed from a voltage source of fixed frequency. Advent of advanced power electronic converters and powerful digital signal processors, however, has made possible the development of high performance, adjustable speed AC motor drives. This book aims to explore new areas of induction motor control based on artificial intelligence (AI) techniques in order to make the controller less sensitive to parameter changes. Selected AI techniques are applied for different induction motor control strategies. The book presents a practical computer simulation model of the induction motor that could be used for studying various induction motor drive operations. The control strategies explored include expert-system-based acceleration control, hybrid-fuzzy/PI two-stage control, neural-network-based direct self control, and genetic algorithm based extended Kalman filter for rotor speed estimation. There are also chapters on neural-network-based parameter estimation, genetic-algorithm-based optimized random PWM strategy, and experimental investigations. A chapter is provided as a primer for readers to get started with simulation studies on various AI techniques. Presents major artificial intelligence techniques to induction motor drives Uses a practical simulation approach to get interested readers started on drive development Authored by experienced scientists with over 20 years of experience in the field Provides numerous examples and the latest research results Simulation programs available from the book's Companion Website This book will be invaluable to graduate students and research engineers who specialize in electric motor drives, electric vehicles, and electric ship propulsion. Graduate students in intelligent control, applied electric motion, and energy, as well as engineers in industrial electronics, automation, and electrical transportation, will also find this book helpful. Simulation materials available for download at www.wiley.com/go/chanmotor
The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state variable estimation in the absence of mechanical sensors, power factor correction, machine flux optimization, fault detection and isolation, and fault tolerant control. Describing the complete control approach, both controller and observer designs are demonstrated using advanced nonlinear methods, stability and performance are analysed using powerful techniques, including implementation considerations using digital computing means. Other key features: • Covers the main types of AC motors including triphase, multiphase, and doubly fed induction motors, wound rotor, permanent magnet, and interior PM synchronous motors • Illustrates the usefulness of the advanced control methods via industrial applications including electric vehicles, high speed trains, steel mills, and more • Includes special focus on sensorless nonlinear observers, adaptive and robust nonlinear controllers, output-feedback controllers, fault detection and isolation algorithms, and fault tolerant controllers This comprehensive volume provides researchers and designers and R&D engineers with a single-source reference on AC motor system drives in the automotive and transportation industry. It will also appeal to advanced students in automatic control, electrical, power systems, mechanical engineering and robotics, as well as mechatronic, process, and applied control system engineers.
This book provides a thorough approach for mastering the behavior and operation of induction motors, an essential device in the modern industrial world. Its way of presentation renders this book suitable for selfteaching by students, engineers, and researchers in the field of electrical engineering. It covers the modern theory of induction motor applications and control methods. The transient analysis of both three-phase and single-phase induction motors as well as that of the double-cage motors are developed. The principles of such modern control methods as Fiel-Oriented Control, Direct Torque Control and Computed Charges Acceleration Method are clearly treated in this monograph. Numerous equations, simulations, and figures are presented.
The third edition of Induction Machines Handbook comprises two volumes, Induction Machines Handbook: Steady State Modeling and Performance and Induction Machines Handbook: Transients, Control Principles, Design and Testing. The promise of renewable (hydro and wind) energy via cage-rotor and doubly fed variable speed generators e-transport propulsion, i-home appliances makes this third edition state of the art tool, conceived with numerous case studies, timely for both Academia and Industry. The first volume offers a thorough treatment of steady state modeling and performance of induction machines, the most used electric motors (generators) in rather constant or variable speed drives for even lower energy consumption and higher productivity in basically all industries, from home appliances, through robotics to e-transport and wind energy conversion. The second volume presents a practical up to date treatment of intricate issues with induction machine (IM) required for design and testing both in rather constant and variable speed (with power electronics) drives. It contains ready to use in industrial design and testing knowledge with numerous case studies to facilitate thorough assimilation of new knowledge.
Inhalt: The purpose of this book is to review the various schemes and methodologies used for speed sensorless operation of induction motors an position sensorless operation of permanent magnet, synchronous reluctance, and switched reluctance motors. Various sensorless control strategies are reviewed based on the papers published in IEEE transactions and conferences and in other international journals.
Electric Motor Control: DC, AC, and BLDC Motors introduces practical drive techniques of electric motors to enable stable and efficient control of many application systems, also covering basic principles of high-performance motor control techniques, driving methods, control theories and power converters. Electric motor drive systems play a critical role in home appliances, motor vehicles, robotics, aerospace and transportation, heating ventilating and cooling equipment's, robotics, industrial machinery and other commercial applications. The book provides engineers with drive techniques that will help them develop motor drive system for their applications. - Includes practical solutions and control techniques for industrial motor drive applications currently in use - Contains MATLAB/Simulink simulation files - Enables engineers to understand the applications and advantages of electric motor drive systems
The importance of electric motors is well known in the various engineering fields. The book provides comprehensive coverage of the various types of electric motors including d.c. motors, three phase and single phase induction motors, synchronous motors, universal motor, a.c. servomotor, linear induction motor and stepper motors. The book covers all the details of d.c. motors including torque equation, back e.m.f., characteristics, types of starters, speed control methods and applications. The book also covers the various testing methods of d.c. motors such as Swinburne's test, brake test, retardation test, field test and Hopkinson's test. The book further explains the three phase induction motors in detail. It includes the production of rotating magnetic field, construction, working, effect of slip, torque equation, torque ratios, torque-slip characteristics, losses, power flow, equivalent circuit, effect of harmonics on the performance, circle diagram and applications. This chapter also includes the discussion of induction generator. The book teaches the various starting methods and speed control methods of three phase induction motors. The book incorporates the explanation of various single phase induction motors. The chapter on synchronous motor provides the detailed discussion of construction, working principle, behavior on load, analysis of phasor diagram, Vee and Inverted Vee curves, hunting, synchronous condenser and applications. The book also teaches the various special machines such as single phase commutator motors, universal motor, a.c. servomotor, linear induction motor and stepper motors. The book uses plain, lucid language to explain each topic. The book provides the logical method of explaining the various complicated topics and stepwise methods to make the understanding easy. Each chapter is well supported with necessary illustrations, self explanatory diagrams and variety of solved problems. The book explains the philosophy of the subject which makes the understanding of the concepts very clear and makes the subject more interesting.